A Hybrid Markov Chain Monte Carlo Approach for Structural Learning in Bayesian Networks Based on Variable Blocking Article Swipe
Lupe S. H. Chan
,
Amanda M. Y. Chu
,
Mike K. P. So
·
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1214/25-ba1521
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1214/25-ba1521
Related Topics
Concepts
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1214/25-ba1521
- OA Status
- diamond
- Cited By
- 1
- References
- 45
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4408692440
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4408692440Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1214/25-ba1521Digital Object Identifier
- Title
-
A Hybrid Markov Chain Monte Carlo Approach for Structural Learning in Bayesian Networks Based on Variable BlockingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-01Full publication date if available
- Authors
-
Lupe S. H. Chan, Amanda M. Y. Chu, Mike K. P. SoList of authors in order
- Landing page
-
https://doi.org/10.1214/25-ba1521Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1214/25-ba1521Direct OA link when available
- Concepts
-
Markov chain Monte Carlo, Blocking (statistics), Computer science, Monte Carlo method, Markov chain, Bayesian network, Bayesian probability, Hybrid Monte Carlo, Artificial intelligence, Machine learning, Mathematics, Statistics, Computer networkTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
45Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4408692440 |
|---|---|
| doi | https://doi.org/10.1214/25-ba1521 |
| ids.doi | https://doi.org/10.1214/25-ba1521 |
| ids.openalex | https://openalex.org/W4408692440 |
| fwci | 4.81974515 |
| type | article |
| title | A Hybrid Markov Chain Monte Carlo Approach for Structural Learning in Bayesian Networks Based on Variable Blocking |
| biblio.issue | -1 |
| biblio.volume | -1 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11303 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Bayesian Modeling and Causal Inference |
| topics[1].id | https://openalex.org/T11512 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9424999952316284 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Anomaly Detection Techniques and Applications |
| topics[2].id | https://openalex.org/T11719 |
| topics[2].field.id | https://openalex.org/fields/18 |
| topics[2].field.display_name | Decision Sciences |
| topics[2].score | 0.9223999977111816 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1803 |
| topics[2].subfield.display_name | Management Science and Operations Research |
| topics[2].display_name | Data Quality and Management |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C111350023 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7386543154716492 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1191869 |
| concepts[0].display_name | Markov chain Monte Carlo |
| concepts[1].id | https://openalex.org/C144745244 |
| concepts[1].level | 2 |
| concepts[1].score | 0.630936324596405 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q4927286 |
| concepts[1].display_name | Blocking (statistics) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5820774435997009 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C19499675 |
| concepts[3].level | 2 |
| concepts[3].score | 0.531349241733551 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q232207 |
| concepts[3].display_name | Monte Carlo method |
| concepts[4].id | https://openalex.org/C98763669 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5271353721618652 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q176645 |
| concepts[4].display_name | Markov chain |
| concepts[5].id | https://openalex.org/C33724603 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5143407583236694 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q812540 |
| concepts[5].display_name | Bayesian network |
| concepts[6].id | https://openalex.org/C107673813 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4344694912433624 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[6].display_name | Bayesian probability |
| concepts[7].id | https://openalex.org/C13153151 |
| concepts[7].level | 4 |
| concepts[7].score | 0.4102543592453003 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1639846 |
| concepts[7].display_name | Hybrid Monte Carlo |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.36911141872406006 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.34402817487716675 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.29857009649276733 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C105795698 |
| concepts[11].level | 1 |
| concepts[11].score | 0.1606839895248413 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[11].display_name | Statistics |
| concepts[12].id | https://openalex.org/C31258907 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[12].display_name | Computer network |
| keywords[0].id | https://openalex.org/keywords/markov-chain-monte-carlo |
| keywords[0].score | 0.7386543154716492 |
| keywords[0].display_name | Markov chain Monte Carlo |
| keywords[1].id | https://openalex.org/keywords/blocking |
| keywords[1].score | 0.630936324596405 |
| keywords[1].display_name | Blocking (statistics) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5820774435997009 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/monte-carlo-method |
| keywords[3].score | 0.531349241733551 |
| keywords[3].display_name | Monte Carlo method |
| keywords[4].id | https://openalex.org/keywords/markov-chain |
| keywords[4].score | 0.5271353721618652 |
| keywords[4].display_name | Markov chain |
| keywords[5].id | https://openalex.org/keywords/bayesian-network |
| keywords[5].score | 0.5143407583236694 |
| keywords[5].display_name | Bayesian network |
| keywords[6].id | https://openalex.org/keywords/bayesian-probability |
| keywords[6].score | 0.4344694912433624 |
| keywords[6].display_name | Bayesian probability |
| keywords[7].id | https://openalex.org/keywords/hybrid-monte-carlo |
| keywords[7].score | 0.4102543592453003 |
| keywords[7].display_name | Hybrid Monte Carlo |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.36911141872406006 |
| keywords[8].display_name | Artificial intelligence |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.34402817487716675 |
| keywords[9].display_name | Machine learning |
| keywords[10].id | https://openalex.org/keywords/mathematics |
| keywords[10].score | 0.29857009649276733 |
| keywords[10].display_name | Mathematics |
| keywords[11].id | https://openalex.org/keywords/statistics |
| keywords[11].score | 0.1606839895248413 |
| keywords[11].display_name | Statistics |
| language | en |
| locations[0].id | doi:10.1214/25-ba1521 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S127898559 |
| locations[0].source.issn | 1931-6690, 1936-0975 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1931-6690 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Bayesian Analysis |
| locations[0].source.host_organization | https://openalex.org/P4310321640 |
| locations[0].source.host_organization_name | International Society for Bayesian Analysis |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310321640 |
| locations[0].source.host_organization_lineage_names | International Society for Bayesian Analysis |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Bayesian Analysis |
| locations[0].landing_page_url | https://doi.org/10.1214/25-ba1521 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5069158555 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0764-7523 |
| authorships[0].author.display_name | Lupe S. H. Chan |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Lupe S. H. Chan |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5069990345 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9543-747X |
| authorships[1].author.display_name | Amanda M. Y. Chu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Amanda M. Y. Chu |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5061166145 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0781-8166 |
| authorships[2].author.display_name | Mike K. P. So |
| authorships[2].countries | HK |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I200769079, https://openalex.org/I889458895 |
| authorships[2].affiliations[0].raw_affiliation_string | The Hong Kong University of Science and Technology |
| authorships[2].institutions[0].id | https://openalex.org/I200769079 |
| authorships[2].institutions[0].ror | https://ror.org/00q4vv597 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I200769079 |
| authorships[2].institutions[0].country_code | HK |
| authorships[2].institutions[0].display_name | Hong Kong University of Science and Technology |
| authorships[2].institutions[1].id | https://openalex.org/I889458895 |
| authorships[2].institutions[1].ror | https://ror.org/02zhqgq86 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I889458895 |
| authorships[2].institutions[1].country_code | HK |
| authorships[2].institutions[1].display_name | University of Hong Kong |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Mike K. P. So |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | The Hong Kong University of Science and Technology |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1214/25-ba1521 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Hybrid Markov Chain Monte Carlo Approach for Structural Learning in Bayesian Networks Based on Variable Blocking |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11303 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Bayesian Modeling and Causal Inference |
| related_works | https://openalex.org/W2305965628, https://openalex.org/W4226314133, https://openalex.org/W3186706744, https://openalex.org/W3192708935, https://openalex.org/W227870709, https://openalex.org/W2959831473, https://openalex.org/W4323055853, https://openalex.org/W2291370119, https://openalex.org/W4288282435, https://openalex.org/W3000025630 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1214/25-ba1521 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S127898559 |
| best_oa_location.source.issn | 1931-6690, 1936-0975 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1931-6690 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Bayesian Analysis |
| best_oa_location.source.host_organization | https://openalex.org/P4310321640 |
| best_oa_location.source.host_organization_name | International Society for Bayesian Analysis |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310321640 |
| best_oa_location.source.host_organization_lineage_names | International Society for Bayesian Analysis |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Bayesian Analysis |
| best_oa_location.landing_page_url | https://doi.org/10.1214/25-ba1521 |
| primary_location.id | doi:10.1214/25-ba1521 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S127898559 |
| primary_location.source.issn | 1931-6690, 1936-0975 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1931-6690 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Bayesian Analysis |
| primary_location.source.host_organization | https://openalex.org/P4310321640 |
| primary_location.source.host_organization_name | International Society for Bayesian Analysis |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310321640 |
| primary_location.source.host_organization_lineage_names | International Society for Bayesian Analysis |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Bayesian Analysis |
| primary_location.landing_page_url | https://doi.org/10.1214/25-ba1521 |
| publication_date | 2025-01-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4302423442, https://openalex.org/W2330192890, https://openalex.org/W1970501449, https://openalex.org/W2107335183, https://openalex.org/W2008205728, https://openalex.org/W2081396765, https://openalex.org/W1517993545, https://openalex.org/W1981696983, https://openalex.org/W3128054065, https://openalex.org/W2913347837, https://openalex.org/W1974745849, https://openalex.org/W4317567518, https://openalex.org/W1983690667, https://openalex.org/W2111143989, https://openalex.org/W2137824508, https://openalex.org/W2964137960, https://openalex.org/W1721345319, https://openalex.org/W2159325249, https://openalex.org/W2053775054, https://openalex.org/W7075683747, https://openalex.org/W1628017834, https://openalex.org/W2157955324, https://openalex.org/W1544685773, https://openalex.org/W2267567366, https://openalex.org/W3002588292, https://openalex.org/W2116855235, https://openalex.org/W4388276162, https://openalex.org/W206739251, https://openalex.org/W2132198881, https://openalex.org/W2078421912, https://openalex.org/W2143891888, https://openalex.org/W2898686044, https://openalex.org/W2025262040, https://openalex.org/W2049785185, https://openalex.org/W1996304775, https://openalex.org/W4399583867, https://openalex.org/W3157340769, https://openalex.org/W2963636084, https://openalex.org/W2020481066, https://openalex.org/W1013235724, https://openalex.org/W2962997929, https://openalex.org/W2031505816, https://openalex.org/W2090818941, https://openalex.org/W3102716430, https://openalex.org/W3104322926 |
| referenced_works_count | 45 |
| abstract_inverted_index | |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.93399474 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |