A Hybrid Metaheuristic Model for Efficient Analytical Business Prediction Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.14569/ijacsa.2023.0140848
Accurate and efficient business analytical predictions are essential for decision making in today's competitive landscape. Involves using data analysis, statistical methods, and predictive modeling to extract insights and make decisions. Current trends focus on applying business analytics to predictions. Optimizing business analytics predictions involves increasing the accuracy and efficiency of predictive models used to forecast future trends, behavior, and outcomes in the business environment. By analyzing data and developing optimization strategies, businesses can improve their operations, reduce costs, and increase profits. The analytic business optimization method uses a hybrid PSO (Particle Swarm Optimization) and GSO (Gravitational Search Optimization) algorithm to increase the efficiency and effectiveness of the decision-making process in business. In this approach, the PSO algorithm is used to explore the search space and find the global best solution, while the GSO algorithm is used to refine the search around the global best solution. The hybrid meta-heuristic method optimizes the three components of business analytics: descriptive, predictive, and perspective. The hybrid model is designed to strike a balance between exploration and exploitation, ensuring effective search and convergence to high-quality solutions. The results show that the R2 value for each optimization parameter is close to one, indicating a more fit model. The RMSE value measures the average prediction error, with a lower error indicating that the model is performing well. MSE represents the mean of the squared difference between the predicted and optimized values. A lower error value indicates a higher level of accuracy.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.14569/ijacsa.2023.0140848
- http://thesai.org/Downloads/Volume14No8/Paper_48-A_Hybrid_Metaheuristic_Model_for_Efficient_Analytical_Business.pdf
- OA Status
- diamond
- Cited By
- 2
- References
- 42
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4386394497
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4386394497Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.14569/ijacsa.2023.0140848Digital Object Identifier
- Title
-
A Hybrid Metaheuristic Model for Efficient Analytical Business PredictionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-01-01Full publication date if available
- Authors
-
Marischa Elveny, Mahyuddin K. M. Nasution, Rahmad SyahList of authors in order
- Landing page
-
https://doi.org/10.14569/ijacsa.2023.0140848Publisher landing page
- PDF URL
-
https://thesai.org/Downloads/Volume14No8/Paper_48-A_Hybrid_Metaheuristic_Model_for_Efficient_Analytical_Business.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://thesai.org/Downloads/Volume14No8/Paper_48-A_Hybrid_Metaheuristic_Model_for_Efficient_Analytical_Business.pdfDirect OA link when available
- Concepts
-
Computer science, Particle swarm optimization, Mean squared error, Metaheuristic, Heuristic, Mathematical optimization, Predictive analytics, Convergence (economics), Analytics, Hybrid algorithm (constraint satisfaction), Data mining, Algorithm, Machine learning, Artificial intelligence, Statistics, Mathematics, Probabilistic logic, Economic growth, Constraint satisfaction, Constraint logic programming, EconomicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1, 2023: 1Per-year citation counts (last 5 years)
- References (count)
-
42Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4386394497 |
|---|---|
| doi | https://doi.org/10.14569/ijacsa.2023.0140848 |
| ids.doi | https://doi.org/10.14569/ijacsa.2023.0140848 |
| ids.openalex | https://openalex.org/W4386394497 |
| fwci | 0.8808628 |
| type | article |
| title | A Hybrid Metaheuristic Model for Efficient Analytical Business Prediction |
| biblio.issue | 8 |
| biblio.volume | 14 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11891 |
| topics[0].field.id | https://openalex.org/fields/14 |
| topics[0].field.display_name | Business, Management and Accounting |
| topics[0].score | 0.9855999946594238 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1404 |
| topics[0].subfield.display_name | Management Information Systems |
| topics[0].display_name | Big Data and Business Intelligence |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7816680073738098 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C85617194 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7308201789855957 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2072794 |
| concepts[1].display_name | Particle swarm optimization |
| concepts[2].id | https://openalex.org/C139945424 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5783623456954956 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1940696 |
| concepts[2].display_name | Mean squared error |
| concepts[3].id | https://openalex.org/C109718341 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5749084949493408 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1385229 |
| concepts[3].display_name | Metaheuristic |
| concepts[4].id | https://openalex.org/C173801870 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5368306040763855 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q201413 |
| concepts[4].display_name | Heuristic |
| concepts[5].id | https://openalex.org/C126255220 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5054500102996826 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[5].display_name | Mathematical optimization |
| concepts[6].id | https://openalex.org/C83209312 |
| concepts[6].level | 2 |
| concepts[6].score | 0.46801555156707764 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1053367 |
| concepts[6].display_name | Predictive analytics |
| concepts[7].id | https://openalex.org/C2777303404 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4450084865093231 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q759757 |
| concepts[7].display_name | Convergence (economics) |
| concepts[8].id | https://openalex.org/C79158427 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4345194101333618 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q485396 |
| concepts[8].display_name | Analytics |
| concepts[9].id | https://openalex.org/C62469222 |
| concepts[9].level | 5 |
| concepts[9].score | 0.430691659450531 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q17092103 |
| concepts[9].display_name | Hybrid algorithm (constraint satisfaction) |
| concepts[10].id | https://openalex.org/C124101348 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3828606903553009 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[10].display_name | Data mining |
| concepts[11].id | https://openalex.org/C11413529 |
| concepts[11].level | 1 |
| concepts[11].score | 0.2620764970779419 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[11].display_name | Algorithm |
| concepts[12].id | https://openalex.org/C119857082 |
| concepts[12].level | 1 |
| concepts[12].score | 0.2573429346084595 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[12].display_name | Machine learning |
| concepts[13].id | https://openalex.org/C154945302 |
| concepts[13].level | 1 |
| concepts[13].score | 0.2295283079147339 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[13].display_name | Artificial intelligence |
| concepts[14].id | https://openalex.org/C105795698 |
| concepts[14].level | 1 |
| concepts[14].score | 0.135819673538208 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[14].display_name | Statistics |
| concepts[15].id | https://openalex.org/C33923547 |
| concepts[15].level | 0 |
| concepts[15].score | 0.10128682851791382 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[15].display_name | Mathematics |
| concepts[16].id | https://openalex.org/C49937458 |
| concepts[16].level | 2 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q2599292 |
| concepts[16].display_name | Probabilistic logic |
| concepts[17].id | https://openalex.org/C50522688 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q189833 |
| concepts[17].display_name | Economic growth |
| concepts[18].id | https://openalex.org/C44616089 |
| concepts[18].level | 3 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q30158686 |
| concepts[18].display_name | Constraint satisfaction |
| concepts[19].id | https://openalex.org/C176783269 |
| concepts[19].level | 4 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q5164378 |
| concepts[19].display_name | Constraint logic programming |
| concepts[20].id | https://openalex.org/C162324750 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[20].display_name | Economics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7816680073738098 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/particle-swarm-optimization |
| keywords[1].score | 0.7308201789855957 |
| keywords[1].display_name | Particle swarm optimization |
| keywords[2].id | https://openalex.org/keywords/mean-squared-error |
| keywords[2].score | 0.5783623456954956 |
| keywords[2].display_name | Mean squared error |
| keywords[3].id | https://openalex.org/keywords/metaheuristic |
| keywords[3].score | 0.5749084949493408 |
| keywords[3].display_name | Metaheuristic |
| keywords[4].id | https://openalex.org/keywords/heuristic |
| keywords[4].score | 0.5368306040763855 |
| keywords[4].display_name | Heuristic |
| keywords[5].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[5].score | 0.5054500102996826 |
| keywords[5].display_name | Mathematical optimization |
| keywords[6].id | https://openalex.org/keywords/predictive-analytics |
| keywords[6].score | 0.46801555156707764 |
| keywords[6].display_name | Predictive analytics |
| keywords[7].id | https://openalex.org/keywords/convergence |
| keywords[7].score | 0.4450084865093231 |
| keywords[7].display_name | Convergence (economics) |
| keywords[8].id | https://openalex.org/keywords/analytics |
| keywords[8].score | 0.4345194101333618 |
| keywords[8].display_name | Analytics |
| keywords[9].id | https://openalex.org/keywords/hybrid-algorithm |
| keywords[9].score | 0.430691659450531 |
| keywords[9].display_name | Hybrid algorithm (constraint satisfaction) |
| keywords[10].id | https://openalex.org/keywords/data-mining |
| keywords[10].score | 0.3828606903553009 |
| keywords[10].display_name | Data mining |
| keywords[11].id | https://openalex.org/keywords/algorithm |
| keywords[11].score | 0.2620764970779419 |
| keywords[11].display_name | Algorithm |
| keywords[12].id | https://openalex.org/keywords/machine-learning |
| keywords[12].score | 0.2573429346084595 |
| keywords[12].display_name | Machine learning |
| keywords[13].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[13].score | 0.2295283079147339 |
| keywords[13].display_name | Artificial intelligence |
| keywords[14].id | https://openalex.org/keywords/statistics |
| keywords[14].score | 0.135819673538208 |
| keywords[14].display_name | Statistics |
| keywords[15].id | https://openalex.org/keywords/mathematics |
| keywords[15].score | 0.10128682851791382 |
| keywords[15].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.14569/ijacsa.2023.0140848 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S23629721 |
| locations[0].source.issn | 2156-5570, 2158-107X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2156-5570 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Journal of Advanced Computer Science and Applications |
| locations[0].source.host_organization | https://openalex.org/P4310311819 |
| locations[0].source.host_organization_name | Science and Information Organization |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311819 |
| locations[0].license | cc-by |
| locations[0].pdf_url | http://thesai.org/Downloads/Volume14No8/Paper_48-A_Hybrid_Metaheuristic_Model_for_Efficient_Analytical_Business.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Advanced Computer Science and Applications |
| locations[0].landing_page_url | https://doi.org/10.14569/ijacsa.2023.0140848 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5080064957 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2014-6173 |
| authorships[0].author.display_name | Marischa Elveny |
| authorships[0].countries | ID |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I254887060 |
| authorships[0].affiliations[0].raw_affiliation_string | Faculty of Computer Science and Information Technology, Universitas Sumatera Utara, Medan, Indonesia |
| authorships[0].institutions[0].id | https://openalex.org/I254887060 |
| authorships[0].institutions[0].ror | https://ror.org/01kknrc90 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I254887060 |
| authorships[0].institutions[0].country_code | ID |
| authorships[0].institutions[0].display_name | Universitas Sumatera Utara |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Marischa Elveny |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Faculty of Computer Science and Information Technology, Universitas Sumatera Utara, Medan, Indonesia |
| authorships[1].author.id | https://openalex.org/A5056997070 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1089-9841 |
| authorships[1].author.display_name | Mahyuddin K. M. Nasution |
| authorships[1].countries | ID |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210146508 |
| authorships[1].affiliations[0].raw_affiliation_string | Faculty of Engineering, Informatics Department, Universitas Medan Area, Medan, Indonesia |
| authorships[1].institutions[0].id | https://openalex.org/I4210146508 |
| authorships[1].institutions[0].ror | https://ror.org/046581250 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210146508 |
| authorships[1].institutions[0].country_code | ID |
| authorships[1].institutions[0].display_name | Medan Area University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Mahyuddin K. M Nasution |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Faculty of Engineering, Informatics Department, Universitas Medan Area, Medan, Indonesia |
| authorships[2].author.id | https://openalex.org/A5054963706 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7324-0177 |
| authorships[2].author.display_name | Rahmad Syah |
| authorships[2].countries | ID |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I254887060 |
| authorships[2].affiliations[0].raw_affiliation_string | Faculty of Computer Science and Information Technology, Universitas Sumatera Utara, Medan, Indonesia |
| authorships[2].institutions[0].id | https://openalex.org/I254887060 |
| authorships[2].institutions[0].ror | https://ror.org/01kknrc90 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I254887060 |
| authorships[2].institutions[0].country_code | ID |
| authorships[2].institutions[0].display_name | Universitas Sumatera Utara |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Rahmad B. Y Syah |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Faculty of Computer Science and Information Technology, Universitas Sumatera Utara, Medan, Indonesia |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | http://thesai.org/Downloads/Volume14No8/Paper_48-A_Hybrid_Metaheuristic_Model_for_Efficient_Analytical_Business.pdf |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Hybrid Metaheuristic Model for Efficient Analytical Business Prediction |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11891 |
| primary_topic.field.id | https://openalex.org/fields/14 |
| primary_topic.field.display_name | Business, Management and Accounting |
| primary_topic.score | 0.9855999946594238 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1404 |
| primary_topic.subfield.display_name | Management Information Systems |
| primary_topic.display_name | Big Data and Business Intelligence |
| related_works | https://openalex.org/W2570647323, https://openalex.org/W2206805568, https://openalex.org/W2076942471, https://openalex.org/W3027285423, https://openalex.org/W2863268765, https://openalex.org/W2896245927, https://openalex.org/W4205879366, https://openalex.org/W1961101704, https://openalex.org/W4254129905, https://openalex.org/W2414447594 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.14569/ijacsa.2023.0140848 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S23629721 |
| best_oa_location.source.issn | 2156-5570, 2158-107X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2156-5570 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Journal of Advanced Computer Science and Applications |
| best_oa_location.source.host_organization | https://openalex.org/P4310311819 |
| best_oa_location.source.host_organization_name | Science and Information Organization |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310311819 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | http://thesai.org/Downloads/Volume14No8/Paper_48-A_Hybrid_Metaheuristic_Model_for_Efficient_Analytical_Business.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Advanced Computer Science and Applications |
| best_oa_location.landing_page_url | https://doi.org/10.14569/ijacsa.2023.0140848 |
| primary_location.id | doi:10.14569/ijacsa.2023.0140848 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S23629721 |
| primary_location.source.issn | 2156-5570, 2158-107X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2156-5570 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Journal of Advanced Computer Science and Applications |
| primary_location.source.host_organization | https://openalex.org/P4310311819 |
| primary_location.source.host_organization_name | Science and Information Organization |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311819 |
| primary_location.license | cc-by |
| primary_location.pdf_url | http://thesai.org/Downloads/Volume14No8/Paper_48-A_Hybrid_Metaheuristic_Model_for_Efficient_Analytical_Business.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Advanced Computer Science and Applications |
| primary_location.landing_page_url | https://doi.org/10.14569/ijacsa.2023.0140848 |
| publication_date | 2023-01-01 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W4381304672, https://openalex.org/W3095669476, https://openalex.org/W2888648656, https://openalex.org/W3104279142, https://openalex.org/W2985079373, https://openalex.org/W2888421737, https://openalex.org/W2946782748, https://openalex.org/W2975867066, https://openalex.org/W2941089296, https://openalex.org/W2899614238, https://openalex.org/W3089877117, https://openalex.org/W2033815440, https://openalex.org/W3049362180, https://openalex.org/W3199981243, https://openalex.org/W3195662367, https://openalex.org/W3212544916, https://openalex.org/W3087870633, https://openalex.org/W3175821757, https://openalex.org/W4293027896, https://openalex.org/W4205129187, https://openalex.org/W4223543993, https://openalex.org/W4220868019, https://openalex.org/W3211128217, https://openalex.org/W4291366336, https://openalex.org/W3214190848, https://openalex.org/W3202510578, https://openalex.org/W3200498745, https://openalex.org/W4292822546, https://openalex.org/W4380354364, https://openalex.org/W3080612479, https://openalex.org/W4312400202, https://openalex.org/W4221092752, https://openalex.org/W4224253340, https://openalex.org/W4303943939, https://openalex.org/W4310060697, https://openalex.org/W4221027504, https://openalex.org/W4220910797, https://openalex.org/W4283763322, https://openalex.org/W4296209180, https://openalex.org/W3107099417, https://openalex.org/W3202848925, https://openalex.org/W3176470377 |
| referenced_works_count | 42 |
| abstract_inverted_index.A | 234 |
| abstract_inverted_index.a | 87, 167, 197, 210, 239 |
| abstract_inverted_index.By | 64 |
| abstract_inverted_index.In | 111 |
| abstract_inverted_index.R2 | 186 |
| abstract_inverted_index.in | 11, 60, 109 |
| abstract_inverted_index.is | 117, 134, 163, 192, 217 |
| abstract_inverted_index.of | 49, 105, 153, 224, 242 |
| abstract_inverted_index.on | 33 |
| abstract_inverted_index.to | 24, 37, 53, 99, 119, 136, 165, 178, 194 |
| abstract_inverted_index.GSO | 94, 132 |
| abstract_inverted_index.MSE | 220 |
| abstract_inverted_index.PSO | 89, 115 |
| abstract_inverted_index.The | 81, 145, 160, 181, 201 |
| abstract_inverted_index.and | 1, 21, 27, 47, 58, 67, 78, 93, 103, 124, 158, 171, 176, 231 |
| abstract_inverted_index.are | 6 |
| abstract_inverted_index.can | 72 |
| abstract_inverted_index.fit | 199 |
| abstract_inverted_index.for | 8, 188 |
| abstract_inverted_index.the | 45, 61, 101, 106, 114, 121, 126, 131, 138, 141, 150, 185, 205, 215, 222, 225, 229 |
| abstract_inverted_index.RMSE | 202 |
| abstract_inverted_index.best | 128, 143 |
| abstract_inverted_index.data | 17, 66 |
| abstract_inverted_index.each | 189 |
| abstract_inverted_index.find | 125 |
| abstract_inverted_index.make | 28 |
| abstract_inverted_index.mean | 223 |
| abstract_inverted_index.more | 198 |
| abstract_inverted_index.one, | 195 |
| abstract_inverted_index.show | 183 |
| abstract_inverted_index.that | 184, 214 |
| abstract_inverted_index.this | 112 |
| abstract_inverted_index.used | 52, 118, 135 |
| abstract_inverted_index.uses | 86 |
| abstract_inverted_index.with | 209 |
| abstract_inverted_index.Swarm | 91 |
| abstract_inverted_index.close | 193 |
| abstract_inverted_index.error | 212, 236 |
| abstract_inverted_index.focus | 32 |
| abstract_inverted_index.level | 241 |
| abstract_inverted_index.lower | 211, 235 |
| abstract_inverted_index.model | 162, 216 |
| abstract_inverted_index.space | 123 |
| abstract_inverted_index.their | 74 |
| abstract_inverted_index.three | 151 |
| abstract_inverted_index.using | 16 |
| abstract_inverted_index.value | 187, 203, 237 |
| abstract_inverted_index.well. | 219 |
| abstract_inverted_index.while | 130 |
| abstract_inverted_index.Search | 96 |
| abstract_inverted_index.around | 140 |
| abstract_inverted_index.costs, | 77 |
| abstract_inverted_index.error, | 208 |
| abstract_inverted_index.future | 55 |
| abstract_inverted_index.global | 127, 142 |
| abstract_inverted_index.higher | 240 |
| abstract_inverted_index.hybrid | 88, 146, 161 |
| abstract_inverted_index.making | 10 |
| abstract_inverted_index.method | 85, 148 |
| abstract_inverted_index.model. | 200 |
| abstract_inverted_index.models | 51 |
| abstract_inverted_index.reduce | 76 |
| abstract_inverted_index.refine | 137 |
| abstract_inverted_index.search | 122, 139, 175 |
| abstract_inverted_index.strike | 166 |
| abstract_inverted_index.trends | 31 |
| abstract_inverted_index.Current | 30 |
| abstract_inverted_index.average | 206 |
| abstract_inverted_index.balance | 168 |
| abstract_inverted_index.between | 169, 228 |
| abstract_inverted_index.explore | 120 |
| abstract_inverted_index.extract | 25 |
| abstract_inverted_index.improve | 73 |
| abstract_inverted_index.process | 108 |
| abstract_inverted_index.results | 182 |
| abstract_inverted_index.squared | 226 |
| abstract_inverted_index.today's | 12 |
| abstract_inverted_index.trends, | 56 |
| abstract_inverted_index.values. | 233 |
| abstract_inverted_index.Accurate | 0 |
| abstract_inverted_index.Involves | 15 |
| abstract_inverted_index.accuracy | 46 |
| abstract_inverted_index.analytic | 82 |
| abstract_inverted_index.applying | 34 |
| abstract_inverted_index.business | 3, 35, 40, 62, 83, 154 |
| abstract_inverted_index.decision | 9 |
| abstract_inverted_index.designed | 164 |
| abstract_inverted_index.ensuring | 173 |
| abstract_inverted_index.forecast | 54 |
| abstract_inverted_index.increase | 79, 100 |
| abstract_inverted_index.insights | 26 |
| abstract_inverted_index.involves | 43 |
| abstract_inverted_index.measures | 204 |
| abstract_inverted_index.methods, | 20 |
| abstract_inverted_index.modeling | 23 |
| abstract_inverted_index.outcomes | 59 |
| abstract_inverted_index.profits. | 80 |
| abstract_inverted_index.(Particle | 90 |
| abstract_inverted_index.accuracy. | 243 |
| abstract_inverted_index.algorithm | 98, 116, 133 |
| abstract_inverted_index.analysis, | 18 |
| abstract_inverted_index.analytics | 36, 41 |
| abstract_inverted_index.analyzing | 65 |
| abstract_inverted_index.approach, | 113 |
| abstract_inverted_index.behavior, | 57 |
| abstract_inverted_index.business. | 110 |
| abstract_inverted_index.effective | 174 |
| abstract_inverted_index.efficient | 2 |
| abstract_inverted_index.essential | 7 |
| abstract_inverted_index.indicates | 238 |
| abstract_inverted_index.optimized | 232 |
| abstract_inverted_index.optimizes | 149 |
| abstract_inverted_index.parameter | 191 |
| abstract_inverted_index.predicted | 230 |
| abstract_inverted_index.solution, | 129 |
| abstract_inverted_index.solution. | 144 |
| abstract_inverted_index.Optimizing | 39 |
| abstract_inverted_index.analytical | 4 |
| abstract_inverted_index.analytics: | 155 |
| abstract_inverted_index.businesses | 71 |
| abstract_inverted_index.components | 152 |
| abstract_inverted_index.decisions. | 29 |
| abstract_inverted_index.developing | 68 |
| abstract_inverted_index.difference | 227 |
| abstract_inverted_index.efficiency | 48, 102 |
| abstract_inverted_index.increasing | 44 |
| abstract_inverted_index.indicating | 196, 213 |
| abstract_inverted_index.landscape. | 14 |
| abstract_inverted_index.performing | 218 |
| abstract_inverted_index.prediction | 207 |
| abstract_inverted_index.predictive | 22, 50 |
| abstract_inverted_index.represents | 221 |
| abstract_inverted_index.solutions. | 180 |
| abstract_inverted_index.competitive | 13 |
| abstract_inverted_index.convergence | 177 |
| abstract_inverted_index.exploration | 170 |
| abstract_inverted_index.operations, | 75 |
| abstract_inverted_index.predictions | 5, 42 |
| abstract_inverted_index.predictive, | 157 |
| abstract_inverted_index.statistical | 19 |
| abstract_inverted_index.strategies, | 70 |
| abstract_inverted_index.descriptive, | 156 |
| abstract_inverted_index.environment. | 63 |
| abstract_inverted_index.high-quality | 179 |
| abstract_inverted_index.optimization | 69, 84, 190 |
| abstract_inverted_index.perspective. | 159 |
| abstract_inverted_index.predictions. | 38 |
| abstract_inverted_index.Optimization) | 92, 97 |
| abstract_inverted_index.effectiveness | 104 |
| abstract_inverted_index.exploitation, | 172 |
| abstract_inverted_index.(Gravitational | 95 |
| abstract_inverted_index.meta-heuristic | 147 |
| abstract_inverted_index.decision-making | 107 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.75766871 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |