A Hybrid Method For Determination Of Effective Poles Using Clustering Dominant Pole Algorithm Article Swipe
Anuj Abraham
,
N. Pappa
,
Daniel Honc
,
Rahul Sharma
·
YOU?
·
· 2015
· Open Access
·
· DOI: https://doi.org/10.5281/zenodo.1099601
YOU?
·
· 2015
· Open Access
·
· DOI: https://doi.org/10.5281/zenodo.1099601
In this paper, an analysis of some model order reduction techniques is presented. A new hybrid algorithm for model order reduction of linear time invariant systems is compared with the conventional techniques namely Balanced Truncation, Hankel Norm reduction and Dominant Pole Algorithm (DPA). The proposed hybrid algorithm is known as Clustering Dominant Pole Algorithm (CDPA), is able to compute the full set of dominant poles and its cluster center efficiently. The dominant poles of a transfer function are specific eigenvalues of the state space matrix of the corresponding dynamical system. The effectiveness of this novel technique is shown through the simulation results.
Related Topics
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://zenodo.org/record/1099601
- OA Status
- green
- Cited By
- 4
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2099593672
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2099593672Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5281/zenodo.1099601Digital Object Identifier
- Title
-
A Hybrid Method For Determination Of Effective Poles Using Clustering Dominant Pole AlgorithmWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2015Year of publication
- Publication date
-
2015-02-01Full publication date if available
- Authors
-
Anuj Abraham, N. Pappa, Daniel Honc, Rahul SharmaList of authors in order
- Landing page
-
https://zenodo.org/record/1099601Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://zenodo.org/record/1099601Direct OA link when available
- Concepts
-
Cluster analysis, Algorithm, Computer science, Mathematics, Artificial intelligenceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2021: 1, 2018: 2, 2017: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2099593672 |
|---|---|
| doi | https://doi.org/10.5281/zenodo.1099601 |
| ids.doi | https://doi.org/10.5281/zenodo.1099601 |
| ids.mag | 2099593672 |
| ids.openalex | https://openalex.org/W2099593672 |
| fwci | 0.8895798 |
| type | article |
| title | A Hybrid Method For Determination Of Effective Poles Using Clustering Dominant Pole Algorithm |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12907 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9682000279426575 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2210 |
| topics[0].subfield.display_name | Mechanical Engineering |
| topics[0].display_name | Mechanical Engineering and Vibrations Research |
| topics[1].id | https://openalex.org/T10805 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9656000137329102 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2203 |
| topics[1].subfield.display_name | Automotive Engineering |
| topics[1].display_name | Vehicle Dynamics and Control Systems |
| topics[2].id | https://openalex.org/T14257 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9452999830245972 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Advanced Measurement and Detection Methods |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C73555534 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7345283031463623 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q622825 |
| concepts[0].display_name | Cluster analysis |
| concepts[1].id | https://openalex.org/C11413529 |
| concepts[1].level | 1 |
| concepts[1].score | 0.558845043182373 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[1].display_name | Algorithm |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.4599134027957916 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C33923547 |
| concepts[3].level | 0 |
| concepts[3].score | 0.3540683090686798 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[3].display_name | Mathematics |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.2684601843357086 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| keywords[0].id | https://openalex.org/keywords/cluster-analysis |
| keywords[0].score | 0.7345283031463623 |
| keywords[0].display_name | Cluster analysis |
| keywords[1].id | https://openalex.org/keywords/algorithm |
| keywords[1].score | 0.558845043182373 |
| keywords[1].display_name | Algorithm |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.4599134027957916 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/mathematics |
| keywords[3].score | 0.3540683090686798 |
| keywords[3].display_name | Mathematics |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.2684601843357086 |
| keywords[4].display_name | Artificial intelligence |
| language | en |
| locations[0].id | mag:2099593672 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400562 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[0].source.host_organization | https://openalex.org/I67311998 |
| locations[0].source.host_organization_name | European Organization for Nuclear Research |
| locations[0].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[0].landing_page_url | https://zenodo.org/record/1099601 |
| locations[1].id | doi:10.5281/zenodo.1099601 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400562 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[1].source.host_organization | https://openalex.org/I67311998 |
| locations[1].source.host_organization_name | European Organization for Nuclear Research |
| locations[1].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article-journal |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.5281/zenodo.1099601 |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A5044429107 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4628-4187 |
| authorships[0].author.display_name | Anuj Abraham |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Anuj Abraham |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5009372481 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7680-2665 |
| authorships[1].author.display_name | N. Pappa |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | N. Pappa |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5024812164 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Daniel Honc |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Daniel Honc |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5001243629 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-2999-1285 |
| authorships[3].author.display_name | Rahul Sharma |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Rahul Sharma |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://zenodo.org/record/1099601 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Hybrid Method For Determination Of Effective Poles Using Clustering Dominant Pole Algorithm |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12907 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9682000279426575 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2210 |
| primary_topic.subfield.display_name | Mechanical Engineering |
| primary_topic.display_name | Mechanical Engineering and Vibrations Research |
| related_works | https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W1979597421, https://openalex.org/W2007980826, https://openalex.org/W4245490552, https://openalex.org/W4225152035, https://openalex.org/W2061531152, https://openalex.org/W3002753104, https://openalex.org/W2077600819, https://openalex.org/W1587224694 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2021 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2018 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2017 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | mag:2099593672 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400562 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| best_oa_location.source.host_organization | https://openalex.org/I67311998 |
| best_oa_location.source.host_organization_name | European Organization for Nuclear Research |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | Zenodo (CERN European Organization for Nuclear Research) |
| best_oa_location.landing_page_url | https://zenodo.org/record/1099601 |
| primary_location.id | mag:2099593672 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400562 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| primary_location.source.host_organization | https://openalex.org/I67311998 |
| primary_location.source.host_organization_name | European Organization for Nuclear Research |
| primary_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | Zenodo (CERN European Organization for Nuclear Research) |
| primary_location.landing_page_url | https://zenodo.org/record/1099601 |
| publication_date | 2015-02-01 |
| publication_year | 2015 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 13 |
| abstract_inverted_index.a | 74 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.an | 3 |
| abstract_inverted_index.as | 49 |
| abstract_inverted_index.is | 11, 26, 47, 55, 96 |
| abstract_inverted_index.of | 5, 21, 62, 73, 80, 85, 92 |
| abstract_inverted_index.to | 57 |
| abstract_inverted_index.The | 43, 70, 90 |
| abstract_inverted_index.and | 38, 65 |
| abstract_inverted_index.are | 77 |
| abstract_inverted_index.for | 17 |
| abstract_inverted_index.its | 66 |
| abstract_inverted_index.new | 14 |
| abstract_inverted_index.set | 61 |
| abstract_inverted_index.the | 59, 81, 86, 99 |
| abstract_inverted_index.Pole | 40, 52 |
| abstract_inverted_index.able | 56 |
| abstract_inverted_index.full | 60 |
| abstract_inverted_index.some | 6 |
| abstract_inverted_index.this | 1, 93 |
| abstract_inverted_index.time | 23 |
| abstract_inverted_index.with | 28 |
| abstract_inverted_index.known | 48 |
| abstract_inverted_index.model | 7 |
| abstract_inverted_index.novel | 94 |
| abstract_inverted_index.order | 19 |
| abstract_inverted_index.poles | 64, 72 |
| abstract_inverted_index.shown | 97 |
| abstract_inverted_index.space | 83 |
| abstract_inverted_index.state | 82 |
| abstract_inverted_index.(DPA). | 42 |
| abstract_inverted_index.Hankel | 35 |
| abstract_inverted_index.hybrid | 15 |
| abstract_inverted_index.linear | 22 |
| abstract_inverted_index.matrix | 84 |
| abstract_inverted_index.namely | 32 |
| abstract_inverted_index.paper, | 2 |
| abstract_inverted_index.cluster | 67 |
| abstract_inverted_index.compute | 58 |
| abstract_inverted_index.system. | 89 |
| abstract_inverted_index.systems | 25 |
| abstract_inverted_index.the<br> | 29 |
| abstract_inverted_index.Balanced | 33 |
| abstract_inverted_index.Dominant | 39, 51 |
| abstract_inverted_index.Norm<br> | 36 |
| abstract_inverted_index.analysis | 4 |
| abstract_inverted_index.compared | 27 |
| abstract_inverted_index.dominant | 63, 71 |
| abstract_inverted_index.function | 76 |
| abstract_inverted_index.proposed | 44 |
| abstract_inverted_index.results. | 101 |
| abstract_inverted_index.transfer | 75 |
| abstract_inverted_index.Algorithm | 41, 53 |
| abstract_inverted_index.algorithm | 16, 46 |
| abstract_inverted_index.invariant | 24 |
| abstract_inverted_index.model<br> | 18 |
| abstract_inverted_index.order<br> | 8 |
| abstract_inverted_index.reduction | 9, 20, 37 |
| abstract_inverted_index.technique | 95 |
| abstract_inverted_index.Clustering | 50 |
| abstract_inverted_index.center<br> | 68 |
| abstract_inverted_index.hybrid<br> | 45 |
| abstract_inverted_index.presented. | 12 |
| abstract_inverted_index.simulation | 100 |
| abstract_inverted_index.techniques | 10, 31 |
| abstract_inverted_index.(CDPA),<br> | 54 |
| abstract_inverted_index.Truncation, | 34 |
| abstract_inverted_index.eigenvalues | 79 |
| abstract_inverted_index.through<br> | 98 |
| abstract_inverted_index.conventional | 30 |
| abstract_inverted_index.efficiently. | 69 |
| abstract_inverted_index.specific<br> | 78 |
| abstract_inverted_index.corresponding | 87 |
| abstract_inverted_index.dynamical<br> | 88 |
| abstract_inverted_index.effectiveness | 91 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.76679387 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |