A Hybrid Method for Implicit Intention Inference Based on Punished-Weighted Naïve Bayes Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1109/tnsre.2023.3259550
Gaze-based implicit intention inference provides a new human-robot interaction for people with disabilities to accomplish activities of daily living independently. Existing gaze-based intention inference is mainly implemented by the data-driven method without prior object information in intention expression, which yields low inference accuracy. Aiming to improve the inference accuracy, we propose a gaze-based hybrid method by integrating model-driven and data-driven intention inference tailored to disability applications. Specifically, intention is considered as the combination of verbs and nouns. The objects corresponding to the nouns are regarded as intention-interpreting objects and served as prior knowledge, i.e., punished factors. The punished factor considers the object information, i.e., the priority in object selection. Class-specific attribute weighted naïve Bayes model learned through training data is presented to represent the relationship among intentions and objects. An intention inference engine is developed by combining the human prior knowledge, and the data-driven class-specific attribute weighted naïve Bayes model. Computer simulations: (i) verify the contribution of each critical component of the proposed model, (ii) evaluate the inference accuracy of the proposed model, and (iii) show that the proposed method is superior to state-of-the-art intention inference methods in terms of accuracy.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/tnsre.2023.3259550
- https://ieeexplore.ieee.org/ielx7/7333/4359219/10081014.pdf
- OA Status
- diamond
- Cited By
- 5
- References
- 37
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4360897419
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4360897419Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/tnsre.2023.3259550Digital Object Identifier
- Title
-
A Hybrid Method for Implicit Intention Inference Based on Punished-Weighted Naïve BayesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-01-01Full publication date if available
- Authors
-
Zheng Gao, Shiqian Wu, Zhonghua Wan, Sos С. AgaianList of authors in order
- Landing page
-
https://doi.org/10.1109/tnsre.2023.3259550Publisher landing page
- PDF URL
-
https://ieeexplore.ieee.org/ielx7/7333/4359219/10081014.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://ieeexplore.ieee.org/ielx7/7333/4359219/10081014.pdfDirect OA link when available
- Concepts
-
Inference, Computer science, Object (grammar), Artificial intelligence, Bayesian inference, Class (philosophy), Bayes' theorem, Machine learning, Noun, Gaze, Expression (computer science), Natural language processing, Bayesian probability, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
5Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 3, 2023: 1Per-year citation counts (last 5 years)
- References (count)
-
37Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4360897419 |
|---|---|
| doi | https://doi.org/10.1109/tnsre.2023.3259550 |
| ids.doi | https://doi.org/10.1109/tnsre.2023.3259550 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/37030670 |
| ids.openalex | https://openalex.org/W4360897419 |
| fwci | 1.22017962 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D033182 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Intention |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D001499 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Bayes Theorem |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D000203 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Activities of Daily Living |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D003198 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Computer Simulation |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D006801 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Humans |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D033182 |
| mesh[6].is_major_topic | True |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Intention |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D001499 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Bayes Theorem |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D000203 |
| mesh[8].is_major_topic | True |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Activities of Daily Living |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D003198 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Computer Simulation |
| type | article |
| title | A Hybrid Method for Implicit Intention Inference Based on Punished-Weighted Naïve Bayes |
| biblio.issue | |
| biblio.volume | 31 |
| biblio.last_page | 1836 |
| biblio.first_page | 1826 |
| topics[0].id | https://openalex.org/T11707 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9970999956130981 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1709 |
| topics[0].subfield.display_name | Human-Computer Interaction |
| topics[0].display_name | Gaze Tracking and Assistive Technology |
| topics[1].id | https://openalex.org/T10429 |
| topics[1].field.id | https://openalex.org/fields/28 |
| topics[1].field.display_name | Neuroscience |
| topics[1].score | 0.9968000054359436 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2805 |
| topics[1].subfield.display_name | Cognitive Neuroscience |
| topics[1].display_name | EEG and Brain-Computer Interfaces |
| topics[2].id | https://openalex.org/T10444 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9822999835014343 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Context-Aware Activity Recognition Systems |
| funders[0].id | https://openalex.org/F4320325431 |
| funders[0].ror | https://ror.org/00e4hrk88 |
| funders[0].display_name | Wuhan University of Science and Technology |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2776214188 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8295019865036011 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[0].display_name | Inference |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6975756883621216 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C2781238097 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6439454555511475 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q175026 |
| concepts[2].display_name | Object (grammar) |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6194998025894165 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C160234255 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5773231387138367 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q812535 |
| concepts[4].display_name | Bayesian inference |
| concepts[5].id | https://openalex.org/C2777212361 |
| concepts[5].level | 2 |
| concepts[5].score | 0.537859320640564 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q5127848 |
| concepts[5].display_name | Class (philosophy) |
| concepts[6].id | https://openalex.org/C207201462 |
| concepts[6].level | 3 |
| concepts[6].score | 0.531863808631897 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q182505 |
| concepts[6].display_name | Bayes' theorem |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.5177937746047974 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C121934690 |
| concepts[8].level | 2 |
| concepts[8].score | 0.44506028294563293 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1084 |
| concepts[8].display_name | Noun |
| concepts[9].id | https://openalex.org/C2779916870 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4249863624572754 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q14467155 |
| concepts[9].display_name | Gaze |
| concepts[10].id | https://openalex.org/C90559484 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4212283790111542 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q778379 |
| concepts[10].display_name | Expression (computer science) |
| concepts[11].id | https://openalex.org/C204321447 |
| concepts[11].level | 1 |
| concepts[11].score | 0.35003769397735596 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[11].display_name | Natural language processing |
| concepts[12].id | https://openalex.org/C107673813 |
| concepts[12].level | 2 |
| concepts[12].score | 0.2402213215827942 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[12].display_name | Bayesian probability |
| concepts[13].id | https://openalex.org/C199360897 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[13].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/inference |
| keywords[0].score | 0.8295019865036011 |
| keywords[0].display_name | Inference |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6975756883621216 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/object |
| keywords[2].score | 0.6439454555511475 |
| keywords[2].display_name | Object (grammar) |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.6194998025894165 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/bayesian-inference |
| keywords[4].score | 0.5773231387138367 |
| keywords[4].display_name | Bayesian inference |
| keywords[5].id | https://openalex.org/keywords/class |
| keywords[5].score | 0.537859320640564 |
| keywords[5].display_name | Class (philosophy) |
| keywords[6].id | https://openalex.org/keywords/bayes-theorem |
| keywords[6].score | 0.531863808631897 |
| keywords[6].display_name | Bayes' theorem |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.5177937746047974 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/noun |
| keywords[8].score | 0.44506028294563293 |
| keywords[8].display_name | Noun |
| keywords[9].id | https://openalex.org/keywords/gaze |
| keywords[9].score | 0.4249863624572754 |
| keywords[9].display_name | Gaze |
| keywords[10].id | https://openalex.org/keywords/expression |
| keywords[10].score | 0.4212283790111542 |
| keywords[10].display_name | Expression (computer science) |
| keywords[11].id | https://openalex.org/keywords/natural-language-processing |
| keywords[11].score | 0.35003769397735596 |
| keywords[11].display_name | Natural language processing |
| keywords[12].id | https://openalex.org/keywords/bayesian-probability |
| keywords[12].score | 0.2402213215827942 |
| keywords[12].display_name | Bayesian probability |
| language | en |
| locations[0].id | doi:10.1109/tnsre.2023.3259550 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S98183460 |
| locations[0].source.issn | 1534-4320, 1558-0210 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1534-4320 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Transactions on Neural Systems and Rehabilitation Engineering |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | |
| locations[0].pdf_url | https://ieeexplore.ieee.org/ielx7/7333/4359219/10081014.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Transactions on Neural Systems and Rehabilitation Engineering |
| locations[0].landing_page_url | https://doi.org/10.1109/tnsre.2023.3259550 |
| locations[1].id | pmid:37030670 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/37030670 |
| locations[2].id | pmh:oai:doaj.org/article:f79d81c06b3b4f179615bc09701244e3 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol 31, Pp 1826-1836 (2023) |
| locations[2].landing_page_url | https://doaj.org/article/f79d81c06b3b4f179615bc09701244e3 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5037553303 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5376-2063 |
| authorships[0].author.display_name | Zheng Gao |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I43922553 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Information Science and Engineering, Institute of Robotics and Intelligent Systems, Wuhan University of Science and Technology, Wuhan, China |
| authorships[0].institutions[0].id | https://openalex.org/I43922553 |
| authorships[0].institutions[0].ror | https://ror.org/00e4hrk88 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I43922553 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Wuhan University of Science and Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zheng Gao |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Information Science and Engineering, Institute of Robotics and Intelligent Systems, Wuhan University of Science and Technology, Wuhan, China |
| authorships[1].author.id | https://openalex.org/A5068171246 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6383-7663 |
| authorships[1].author.display_name | Shiqian Wu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I43922553 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Information Science and Engineering, Institute of Robotics and Intelligent Systems, Wuhan University of Science and Technology, Wuhan, China |
| authorships[1].institutions[0].id | https://openalex.org/I43922553 |
| authorships[1].institutions[0].ror | https://ror.org/00e4hrk88 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I43922553 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Wuhan University of Science and Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Shiqian Wu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Information Science and Engineering, Institute of Robotics and Intelligent Systems, Wuhan University of Science and Technology, Wuhan, China |
| authorships[2].author.id | https://openalex.org/A5078635469 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6350-2468 |
| authorships[2].author.display_name | Zhonghua Wan |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I43922553 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Information Science and Engineering, Institute of Robotics and Intelligent Systems, Wuhan University of Science and Technology, Wuhan, China |
| authorships[2].institutions[0].id | https://openalex.org/I43922553 |
| authorships[2].institutions[0].ror | https://ror.org/00e4hrk88 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I43922553 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Wuhan University of Science and Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zhonghua Wan |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Information Science and Engineering, Institute of Robotics and Intelligent Systems, Wuhan University of Science and Technology, Wuhan, China |
| authorships[3].author.id | https://openalex.org/A5048285657 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-4601-4507 |
| authorships[3].author.display_name | Sos С. Agaian |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I121847817, https://openalex.org/I142393192, https://openalex.org/I174216632 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Computer Science, College of Staten Island and Graduate Center, City University of New York, New York City, NY, USA |
| authorships[3].institutions[0].id | https://openalex.org/I174216632 |
| authorships[3].institutions[0].ror | https://ror.org/00453a208 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I174216632 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | City University of New York |
| authorships[3].institutions[1].id | https://openalex.org/I142393192 |
| authorships[3].institutions[1].ror | https://ror.org/02p179j44 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I142393192 |
| authorships[3].institutions[1].country_code | US |
| authorships[3].institutions[1].display_name | College of Staten Island |
| authorships[3].institutions[2].id | https://openalex.org/I121847817 |
| authorships[3].institutions[2].ror | https://ror.org/00awd9g61 |
| authorships[3].institutions[2].type | education |
| authorships[3].institutions[2].lineage | https://openalex.org/I121847817 |
| authorships[3].institutions[2].country_code | US |
| authorships[3].institutions[2].display_name | The Graduate Center, CUNY |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Sos Agaian |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Computer Science, College of Staten Island and Graduate Center, City University of New York, New York City, NY, USA |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ieeexplore.ieee.org/ielx7/7333/4359219/10081014.pdf |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Hybrid Method for Implicit Intention Inference Based on Punished-Weighted Naïve Bayes |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11707 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9970999956130981 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1709 |
| primary_topic.subfield.display_name | Human-Computer Interaction |
| primary_topic.display_name | Gaze Tracking and Assistive Technology |
| related_works | https://openalex.org/W1880689012, https://openalex.org/W3014378845, https://openalex.org/W4240909707, https://openalex.org/W2059546927, https://openalex.org/W2372267530, https://openalex.org/W2969189870, https://openalex.org/W3015855446, https://openalex.org/W4303857162, https://openalex.org/W2965643117, https://openalex.org/W3013612038 |
| cited_by_count | 5 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1109/tnsre.2023.3259550 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S98183460 |
| best_oa_location.source.issn | 1534-4320, 1558-0210 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1534-4320 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Transactions on Neural Systems and Rehabilitation Engineering |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://ieeexplore.ieee.org/ielx7/7333/4359219/10081014.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Transactions on Neural Systems and Rehabilitation Engineering |
| best_oa_location.landing_page_url | https://doi.org/10.1109/tnsre.2023.3259550 |
| primary_location.id | doi:10.1109/tnsre.2023.3259550 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S98183460 |
| primary_location.source.issn | 1534-4320, 1558-0210 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1534-4320 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Transactions on Neural Systems and Rehabilitation Engineering |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | |
| primary_location.pdf_url | https://ieeexplore.ieee.org/ielx7/7333/4359219/10081014.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Transactions on Neural Systems and Rehabilitation Engineering |
| primary_location.landing_page_url | https://doi.org/10.1109/tnsre.2023.3259550 |
| publication_date | 2023-01-01 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2149690083, https://openalex.org/W2003653724, https://openalex.org/W2467301443, https://openalex.org/W2972273766, https://openalex.org/W2132020110, https://openalex.org/W2087704839, https://openalex.org/W2468296993, https://openalex.org/W2976818183, https://openalex.org/W3115673219, https://openalex.org/W2798685833, https://openalex.org/W3006999887, https://openalex.org/W3174359952, https://openalex.org/W3202648990, https://openalex.org/W2294096036, https://openalex.org/W2906219823, https://openalex.org/W2979556775, https://openalex.org/W2319315262, https://openalex.org/W2577026679, https://openalex.org/W3165831824, https://openalex.org/W1496918241, https://openalex.org/W2970199969, https://openalex.org/W2282289695, https://openalex.org/W2019439081, https://openalex.org/W2803413127, https://openalex.org/W1853307972, https://openalex.org/W1975299065, https://openalex.org/W2067766975, https://openalex.org/W2902087014, https://openalex.org/W3209004335, https://openalex.org/W6684989136, https://openalex.org/W2005126631, https://openalex.org/W2155529731, https://openalex.org/W2962991900, https://openalex.org/W1986291329, https://openalex.org/W2964260135, https://openalex.org/W2172238468, https://openalex.org/W2949661619 |
| referenced_works_count | 37 |
| abstract_inverted_index.a | 5, 51 |
| abstract_inverted_index.An | 129 |
| abstract_inverted_index.as | 70, 85, 90 |
| abstract_inverted_index.by | 27, 55, 135 |
| abstract_inverted_index.in | 35, 106, 187 |
| abstract_inverted_index.is | 24, 68, 119, 133, 180 |
| abstract_inverted_index.of | 16, 73, 156, 160, 169, 189 |
| abstract_inverted_index.to | 13, 44, 63, 80, 121, 182 |
| abstract_inverted_index.we | 49 |
| abstract_inverted_index.(i) | 152 |
| abstract_inverted_index.The | 77, 96 |
| abstract_inverted_index.and | 58, 75, 88, 127, 141, 173 |
| abstract_inverted_index.are | 83 |
| abstract_inverted_index.for | 9 |
| abstract_inverted_index.low | 40 |
| abstract_inverted_index.new | 6 |
| abstract_inverted_index.the | 28, 46, 71, 81, 100, 104, 123, 137, 142, 154, 161, 166, 170, 177 |
| abstract_inverted_index.(ii) | 164 |
| abstract_inverted_index.data | 118 |
| abstract_inverted_index.each | 157 |
| abstract_inverted_index.show | 175 |
| abstract_inverted_index.that | 176 |
| abstract_inverted_index.with | 11 |
| abstract_inverted_index.(iii) | 174 |
| abstract_inverted_index.Bayes | 113, 148 |
| abstract_inverted_index.among | 125 |
| abstract_inverted_index.daily | 17 |
| abstract_inverted_index.human | 138 |
| abstract_inverted_index.i.e., | 93, 103 |
| abstract_inverted_index.model | 114 |
| abstract_inverted_index.nouns | 82 |
| abstract_inverted_index.prior | 32, 91, 139 |
| abstract_inverted_index.terms | 188 |
| abstract_inverted_index.verbs | 74 |
| abstract_inverted_index.which | 38 |
| abstract_inverted_index.Aiming | 43 |
| abstract_inverted_index.engine | 132 |
| abstract_inverted_index.factor | 98 |
| abstract_inverted_index.hybrid | 53 |
| abstract_inverted_index.living | 18 |
| abstract_inverted_index.mainly | 25 |
| abstract_inverted_index.method | 30, 54, 179 |
| abstract_inverted_index.model, | 163, 172 |
| abstract_inverted_index.model. | 149 |
| abstract_inverted_index.naïve | 112, 147 |
| abstract_inverted_index.nouns. | 76 |
| abstract_inverted_index.object | 33, 101, 107 |
| abstract_inverted_index.people | 10 |
| abstract_inverted_index.served | 89 |
| abstract_inverted_index.verify | 153 |
| abstract_inverted_index.yields | 39 |
| abstract_inverted_index.improve | 45 |
| abstract_inverted_index.learned | 115 |
| abstract_inverted_index.methods | 186 |
| abstract_inverted_index.objects | 78, 87 |
| abstract_inverted_index.propose | 50 |
| abstract_inverted_index.through | 116 |
| abstract_inverted_index.without | 31 |
| abstract_inverted_index.Computer | 150 |
| abstract_inverted_index.Existing | 20 |
| abstract_inverted_index.accuracy | 168 |
| abstract_inverted_index.critical | 158 |
| abstract_inverted_index.evaluate | 165 |
| abstract_inverted_index.factors. | 95 |
| abstract_inverted_index.implicit | 1 |
| abstract_inverted_index.objects. | 128 |
| abstract_inverted_index.priority | 105 |
| abstract_inverted_index.proposed | 162, 171, 178 |
| abstract_inverted_index.provides | 4 |
| abstract_inverted_index.punished | 94, 97 |
| abstract_inverted_index.regarded | 84 |
| abstract_inverted_index.superior | 181 |
| abstract_inverted_index.tailored | 62 |
| abstract_inverted_index.training | 117 |
| abstract_inverted_index.weighted | 111, 146 |
| abstract_inverted_index.accuracy, | 48 |
| abstract_inverted_index.accuracy. | 42, 190 |
| abstract_inverted_index.attribute | 110, 145 |
| abstract_inverted_index.combining | 136 |
| abstract_inverted_index.component | 159 |
| abstract_inverted_index.considers | 99 |
| abstract_inverted_index.developed | 134 |
| abstract_inverted_index.inference | 3, 23, 41, 47, 61, 131, 167, 185 |
| abstract_inverted_index.intention | 2, 22, 36, 60, 67, 130, 184 |
| abstract_inverted_index.presented | 120 |
| abstract_inverted_index.represent | 122 |
| abstract_inverted_index.Gaze-based | 0 |
| abstract_inverted_index.accomplish | 14 |
| abstract_inverted_index.activities | 15 |
| abstract_inverted_index.considered | 69 |
| abstract_inverted_index.disability | 64 |
| abstract_inverted_index.gaze-based | 21, 52 |
| abstract_inverted_index.intentions | 126 |
| abstract_inverted_index.knowledge, | 92, 140 |
| abstract_inverted_index.selection. | 108 |
| abstract_inverted_index.combination | 72 |
| abstract_inverted_index.data-driven | 29, 59, 143 |
| abstract_inverted_index.expression, | 37 |
| abstract_inverted_index.human-robot | 7 |
| abstract_inverted_index.implemented | 26 |
| abstract_inverted_index.information | 34 |
| abstract_inverted_index.integrating | 56 |
| abstract_inverted_index.interaction | 8 |
| abstract_inverted_index.contribution | 155 |
| abstract_inverted_index.disabilities | 12 |
| abstract_inverted_index.information, | 102 |
| abstract_inverted_index.model-driven | 57 |
| abstract_inverted_index.relationship | 124 |
| abstract_inverted_index.simulations: | 151 |
| abstract_inverted_index.Specifically, | 66 |
| abstract_inverted_index.applications. | 65 |
| abstract_inverted_index.corresponding | 79 |
| abstract_inverted_index.Class-specific | 109 |
| abstract_inverted_index.class-specific | 144 |
| abstract_inverted_index.independently. | 19 |
| abstract_inverted_index.state-of-the-art | 183 |
| abstract_inverted_index.intention-interpreting | 86 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.7900000214576721 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile.value | 0.75546678 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |