A Hybrid Spiking Neural Network-Quantum Classifier Framework: A Case Study Using EEG Data Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.21203/rs.3.rs-6173906/v1
The study introduces a hybrid computational framework that combines neuro-inspired information processing using spiking neural networks (SNN) and quantum information processing using quantum kernels to develop quantum-enhanced machine learning models, demonstrated through the classification of EEG data as a case study. In the proposed SNN-quantum kernel classifier (SNN-QC), SNN with spike time information representation is employed to learn spatio-temporal interactions (EEG recorded from multiple channels over time). Frequency-based (rate-based) information as spike frequency state vectors are extracted from the SNN and classified using a quantum classifier. In the latter part, we use the quantum kernel approach utilizing feature maps for classification tasks. The proposed SNN-QC is demonstrated on a benchmark EEG dataset to classify three distinct wrist movement tasks in six binary classification setups as a proof of concept. We introduce a novel feature map with high-order nonlinearity, which has outperformed current state-of-the-art feature maps and various machine learning methods in most of the case studies. Furthermore, the role of hyperparameters for enhanced feature maps is also highlighted. The performance of SNN-QC is evaluated using statistical metrics and cross-validation techniques, demonstrating its 1 efficacy across multiple binary classifiers. An experimental validation is also performed on an IBM QPU. The results demonstrate that the SNN-QC significantly outperforms the models that use statistical features rather than features extracted from the SNN as SNN accounts for the temporal interaction between the spatio-temporal input variables. Finally, we conclude that the SNN-QC offers a potential pathway for developing more accurate neuromorphic-quantum enhanced systems that are both energy-efficient and biologically-inspired, well-suited for dealing with spatio-temporal data.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.21203/rs.3.rs-6173906/v1
- https://www.researchsquare.com/article/rs-6173906/latest.pdf
- OA Status
- gold
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4408693656
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4408693656Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.21203/rs.3.rs-6173906/v1Digital Object Identifier
- Title
-
A Hybrid Spiking Neural Network-Quantum Classifier Framework: A Case Study Using EEG DataWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-03-21Full publication date if available
- Authors
-
Ravi Kumar Jha, Nikola Kasabov, Saugat Bhattacharyya, Damien Coyle, Girijesh PrasadList of authors in order
- Landing page
-
https://doi.org/10.21203/rs.3.rs-6173906/v1Publisher landing page
- PDF URL
-
https://www.researchsquare.com/article/rs-6173906/latest.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.researchsquare.com/article/rs-6173906/latest.pdfDirect OA link when available
- Concepts
-
Artificial neural network, Computer science, Electroencephalography, Classifier (UML), Artificial intelligence, Quantum, Pattern recognition (psychology), Machine learning, Neuroscience, Psychology, Physics, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4408693656 |
|---|---|
| doi | https://doi.org/10.21203/rs.3.rs-6173906/v1 |
| ids.doi | https://doi.org/10.21203/rs.3.rs-6173906/v1 |
| ids.openalex | https://openalex.org/W4408693656 |
| fwci | 0.0 |
| type | preprint |
| title | A Hybrid Spiking Neural Network-Quantum Classifier Framework: A Case Study Using EEG Data |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10502 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9941999912261963 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Advanced Memory and Neural Computing |
| topics[1].id | https://openalex.org/T10429 |
| topics[1].field.id | https://openalex.org/fields/28 |
| topics[1].field.display_name | Neuroscience |
| topics[1].score | 0.9836999773979187 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2805 |
| topics[1].subfield.display_name | Cognitive Neuroscience |
| topics[1].display_name | EEG and Brain-Computer Interfaces |
| topics[2].id | https://openalex.org/T10320 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9815999865531921 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Neural Networks and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C50644808 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6033524870872498 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[0].display_name | Artificial neural network |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6013157963752747 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C522805319 |
| concepts[2].level | 2 |
| concepts[2].score | 0.591545820236206 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q179965 |
| concepts[2].display_name | Electroencephalography |
| concepts[3].id | https://openalex.org/C95623464 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5824942588806152 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1096149 |
| concepts[3].display_name | Classifier (UML) |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4984705448150635 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C84114770 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4831918776035309 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q46344 |
| concepts[5].display_name | Quantum |
| concepts[6].id | https://openalex.org/C153180895 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4185435175895691 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[6].display_name | Pattern recognition (psychology) |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3431774973869324 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C169760540 |
| concepts[8].level | 1 |
| concepts[8].score | 0.2128104269504547 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[8].display_name | Neuroscience |
| concepts[9].id | https://openalex.org/C15744967 |
| concepts[9].level | 0 |
| concepts[9].score | 0.16151025891304016 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[9].display_name | Psychology |
| concepts[10].id | https://openalex.org/C121332964 |
| concepts[10].level | 0 |
| concepts[10].score | 0.09695211052894592 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[10].display_name | Physics |
| concepts[11].id | https://openalex.org/C62520636 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[11].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[0].score | 0.6033524870872498 |
| keywords[0].display_name | Artificial neural network |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6013157963752747 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/electroencephalography |
| keywords[2].score | 0.591545820236206 |
| keywords[2].display_name | Electroencephalography |
| keywords[3].id | https://openalex.org/keywords/classifier |
| keywords[3].score | 0.5824942588806152 |
| keywords[3].display_name | Classifier (UML) |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.4984705448150635 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/quantum |
| keywords[5].score | 0.4831918776035309 |
| keywords[5].display_name | Quantum |
| keywords[6].id | https://openalex.org/keywords/pattern-recognition |
| keywords[6].score | 0.4185435175895691 |
| keywords[6].display_name | Pattern recognition (psychology) |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.3431774973869324 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/neuroscience |
| keywords[8].score | 0.2128104269504547 |
| keywords[8].display_name | Neuroscience |
| keywords[9].id | https://openalex.org/keywords/psychology |
| keywords[9].score | 0.16151025891304016 |
| keywords[9].display_name | Psychology |
| keywords[10].id | https://openalex.org/keywords/physics |
| keywords[10].score | 0.09695211052894592 |
| keywords[10].display_name | Physics |
| language | en |
| locations[0].id | doi:10.21203/rs.3.rs-6173906/v1 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.researchsquare.com/article/rs-6173906/latest.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.21203/rs.3.rs-6173906/v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5091089623 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0413-7867 |
| authorships[0].author.display_name | Ravi Kumar Jha |
| authorships[0].countries | GB |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I138801177 |
| authorships[0].affiliations[0].raw_affiliation_string | Ulster University |
| authorships[0].institutions[0].id | https://openalex.org/I138801177 |
| authorships[0].institutions[0].ror | https://ror.org/01yp9g959 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I138801177 |
| authorships[0].institutions[0].country_code | GB |
| authorships[0].institutions[0].display_name | University of Ulster |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ravi Kumar Jha |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Ulster University |
| authorships[1].author.id | https://openalex.org/A5024893012 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4433-7521 |
| authorships[1].author.display_name | Nikola Kasabov |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I138801177 |
| authorships[1].affiliations[0].raw_affiliation_string | Ulster University |
| authorships[1].institutions[0].id | https://openalex.org/I138801177 |
| authorships[1].institutions[0].ror | https://ror.org/01yp9g959 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I138801177 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | University of Ulster |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Nikola Kasabov |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Ulster University |
| authorships[2].author.id | https://openalex.org/A5011667562 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9191-3670 |
| authorships[2].author.display_name | Saugat Bhattacharyya |
| authorships[2].countries | GB |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I138801177 |
| authorships[2].affiliations[0].raw_affiliation_string | Ulster University |
| authorships[2].institutions[0].id | https://openalex.org/I138801177 |
| authorships[2].institutions[0].ror | https://ror.org/01yp9g959 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I138801177 |
| authorships[2].institutions[0].country_code | GB |
| authorships[2].institutions[0].display_name | University of Ulster |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Saugat Bhattacharyya |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Ulster University |
| authorships[3].author.id | https://openalex.org/A5040873360 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4739-1040 |
| authorships[3].author.display_name | Damien Coyle |
| authorships[3].countries | GB |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I138801177 |
| authorships[3].affiliations[0].raw_affiliation_string | Ulster University |
| authorships[3].institutions[0].id | https://openalex.org/I138801177 |
| authorships[3].institutions[0].ror | https://ror.org/01yp9g959 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I138801177 |
| authorships[3].institutions[0].country_code | GB |
| authorships[3].institutions[0].display_name | University of Ulster |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Damien Coyle |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Ulster University |
| authorships[4].author.id | https://openalex.org/A5054882631 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-3284-9589 |
| authorships[4].author.display_name | Girijesh Prasad |
| authorships[4].countries | GB |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I138801177 |
| authorships[4].affiliations[0].raw_affiliation_string | Ulster University |
| authorships[4].institutions[0].id | https://openalex.org/I138801177 |
| authorships[4].institutions[0].ror | https://ror.org/01yp9g959 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I138801177 |
| authorships[4].institutions[0].country_code | GB |
| authorships[4].institutions[0].display_name | University of Ulster |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Girijesh Prasad |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Ulster University |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.researchsquare.com/article/rs-6173906/latest.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Hybrid Spiking Neural Network-Quantum Classifier Framework: A Case Study Using EEG Data |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-18T23:42:31.664661 |
| primary_topic.id | https://openalex.org/T10502 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9941999912261963 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Advanced Memory and Neural Computing |
| related_works | https://openalex.org/W2922348724, https://openalex.org/W200322357, https://openalex.org/W2130428257, https://openalex.org/W4308951944, https://openalex.org/W2057366091, https://openalex.org/W4312960290, https://openalex.org/W2049513647, https://openalex.org/W2988848585, https://openalex.org/W4233722919, https://openalex.org/W4323929055 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.21203/rs.3.rs-6173906/v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.researchsquare.com/article/rs-6173906/latest.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-6173906/v1 |
| primary_location.id | doi:10.21203/rs.3.rs-6173906/v1 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.researchsquare.com/article/rs-6173906/latest.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-6173906/v1 |
| publication_date | 2025-03-21 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.1 | 183 |
| abstract_inverted_index.a | 4, 39, 84, 109, 126, 132, 239 |
| abstract_inverted_index.An | 189 |
| abstract_inverted_index.In | 42, 87 |
| abstract_inverted_index.We | 130 |
| abstract_inverted_index.an | 196 |
| abstract_inverted_index.as | 38, 71, 125, 220 |
| abstract_inverted_index.in | 120, 151 |
| abstract_inverted_index.is | 55, 106, 166, 173, 192 |
| abstract_inverted_index.of | 35, 128, 153, 160, 171 |
| abstract_inverted_index.on | 108, 195 |
| abstract_inverted_index.to | 25, 57, 113 |
| abstract_inverted_index.we | 91, 233 |
| abstract_inverted_index.EEG | 36, 111 |
| abstract_inverted_index.IBM | 197 |
| abstract_inverted_index.SNN | 49, 80, 219, 221 |
| abstract_inverted_index.The | 1, 103, 169, 199 |
| abstract_inverted_index.and | 18, 81, 146, 178, 253 |
| abstract_inverted_index.are | 76, 250 |
| abstract_inverted_index.for | 100, 162, 223, 242, 256 |
| abstract_inverted_index.has | 140 |
| abstract_inverted_index.its | 182 |
| abstract_inverted_index.map | 135 |
| abstract_inverted_index.six | 121 |
| abstract_inverted_index.the | 33, 43, 79, 88, 93, 154, 158, 203, 207, 218, 224, 228, 236 |
| abstract_inverted_index.use | 92, 210 |
| abstract_inverted_index.(EEG | 61 |
| abstract_inverted_index.QPU. | 198 |
| abstract_inverted_index.also | 167, 193 |
| abstract_inverted_index.both | 251 |
| abstract_inverted_index.case | 40, 155 |
| abstract_inverted_index.data | 37 |
| abstract_inverted_index.from | 63, 78, 217 |
| abstract_inverted_index.maps | 99, 145, 165 |
| abstract_inverted_index.more | 244 |
| abstract_inverted_index.most | 152 |
| abstract_inverted_index.over | 66 |
| abstract_inverted_index.role | 159 |
| abstract_inverted_index.than | 214 |
| abstract_inverted_index.that | 8, 202, 209, 235, 249 |
| abstract_inverted_index.time | 52 |
| abstract_inverted_index.with | 50, 136, 258 |
| abstract_inverted_index.(SNN) | 17 |
| abstract_inverted_index.data. | 260 |
| abstract_inverted_index.input | 230 |
| abstract_inverted_index.learn | 58 |
| abstract_inverted_index.novel | 133 |
| abstract_inverted_index.part, | 90 |
| abstract_inverted_index.proof | 127 |
| abstract_inverted_index.spike | 51, 72 |
| abstract_inverted_index.state | 74 |
| abstract_inverted_index.study | 2 |
| abstract_inverted_index.tasks | 119 |
| abstract_inverted_index.three | 115 |
| abstract_inverted_index.using | 13, 22, 83, 175 |
| abstract_inverted_index.which | 139 |
| abstract_inverted_index.wrist | 117 |
| abstract_inverted_index.SNN-QC | 105, 172, 204, 237 |
| abstract_inverted_index.across | 185 |
| abstract_inverted_index.binary | 122, 187 |
| abstract_inverted_index.hybrid | 5 |
| abstract_inverted_index.kernel | 46, 95 |
| abstract_inverted_index.latter | 89 |
| abstract_inverted_index.models | 208 |
| abstract_inverted_index.neural | 15 |
| abstract_inverted_index.offers | 238 |
| abstract_inverted_index.rather | 213 |
| abstract_inverted_index.setups | 124 |
| abstract_inverted_index.study. | 41 |
| abstract_inverted_index.tasks. | 102 |
| abstract_inverted_index.time). | 67 |
| abstract_inverted_index.between | 227 |
| abstract_inverted_index.current | 142 |
| abstract_inverted_index.dataset | 112 |
| abstract_inverted_index.dealing | 257 |
| abstract_inverted_index.develop | 26 |
| abstract_inverted_index.feature | 98, 134, 144, 164 |
| abstract_inverted_index.kernels | 24 |
| abstract_inverted_index.machine | 28, 148 |
| abstract_inverted_index.methods | 150 |
| abstract_inverted_index.metrics | 177 |
| abstract_inverted_index.models, | 30 |
| abstract_inverted_index.pathway | 241 |
| abstract_inverted_index.quantum | 19, 23, 85, 94 |
| abstract_inverted_index.results | 200 |
| abstract_inverted_index.spiking | 14 |
| abstract_inverted_index.systems | 248 |
| abstract_inverted_index.through | 32 |
| abstract_inverted_index.various | 147 |
| abstract_inverted_index.vectors | 75 |
| abstract_inverted_index.Finally, | 232 |
| abstract_inverted_index.accounts | 222 |
| abstract_inverted_index.accurate | 245 |
| abstract_inverted_index.approach | 96 |
| abstract_inverted_index.channels | 65 |
| abstract_inverted_index.classify | 114 |
| abstract_inverted_index.combines | 9 |
| abstract_inverted_index.concept. | 129 |
| abstract_inverted_index.conclude | 234 |
| abstract_inverted_index.distinct | 116 |
| abstract_inverted_index.efficacy | 184 |
| abstract_inverted_index.employed | 56 |
| abstract_inverted_index.enhanced | 163, 247 |
| abstract_inverted_index.features | 212, 215 |
| abstract_inverted_index.learning | 29, 149 |
| abstract_inverted_index.movement | 118 |
| abstract_inverted_index.multiple | 64, 186 |
| abstract_inverted_index.networks | 16 |
| abstract_inverted_index.proposed | 44, 104 |
| abstract_inverted_index.recorded | 62 |
| abstract_inverted_index.studies. | 156 |
| abstract_inverted_index.temporal | 225 |
| abstract_inverted_index.(SNN-QC), | 48 |
| abstract_inverted_index.benchmark | 110 |
| abstract_inverted_index.evaluated | 174 |
| abstract_inverted_index.extracted | 77, 216 |
| abstract_inverted_index.framework | 7 |
| abstract_inverted_index.frequency | 73 |
| abstract_inverted_index.introduce | 131 |
| abstract_inverted_index.performed | 194 |
| abstract_inverted_index.potential | 240 |
| abstract_inverted_index.utilizing | 97 |
| abstract_inverted_index.classified | 82 |
| abstract_inverted_index.classifier | 47 |
| abstract_inverted_index.developing | 243 |
| abstract_inverted_index.high-order | 137 |
| abstract_inverted_index.introduces | 3 |
| abstract_inverted_index.processing | 12, 21 |
| abstract_inverted_index.validation | 191 |
| abstract_inverted_index.variables. | 231 |
| abstract_inverted_index.SNN-quantum | 45 |
| abstract_inverted_index.classifier. | 86 |
| abstract_inverted_index.demonstrate | 201 |
| abstract_inverted_index.information | 11, 20, 53, 70 |
| abstract_inverted_index.interaction | 226 |
| abstract_inverted_index.outperforms | 206 |
| abstract_inverted_index.performance | 170 |
| abstract_inverted_index.statistical | 176, 211 |
| abstract_inverted_index.techniques, | 180 |
| abstract_inverted_index.well-suited | 255 |
| abstract_inverted_index.(rate-based) | 69 |
| abstract_inverted_index.Furthermore, | 157 |
| abstract_inverted_index.classifiers. | 188 |
| abstract_inverted_index.demonstrated | 31, 107 |
| abstract_inverted_index.experimental | 190 |
| abstract_inverted_index.highlighted. | 168 |
| abstract_inverted_index.interactions | 60 |
| abstract_inverted_index.outperformed | 141 |
| abstract_inverted_index.computational | 6 |
| abstract_inverted_index.demonstrating | 181 |
| abstract_inverted_index.nonlinearity, | 138 |
| abstract_inverted_index.significantly | 205 |
| abstract_inverted_index.classification | 34, 101, 123 |
| abstract_inverted_index.neuro-inspired | 10 |
| abstract_inverted_index.representation | 54 |
| abstract_inverted_index.Frequency-based | 68 |
| abstract_inverted_index.hyperparameters | 161 |
| abstract_inverted_index.spatio-temporal | 59, 229, 259 |
| abstract_inverted_index.cross-validation | 179 |
| abstract_inverted_index.energy-efficient | 252 |
| abstract_inverted_index.quantum-enhanced | 27 |
| abstract_inverted_index.state-of-the-art | 143 |
| abstract_inverted_index.neuromorphic-quantum | 246 |
| abstract_inverted_index.biologically-inspired, | 254 |
| abstract_inverted_index.<title>Abstract</title> | 0 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.08663067 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |