A hybrid SVR with the firefly algorithm enhanced by a logarithmic spiral for electric load forecasting Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.3389/fenrg.2022.977854
Accurate forecasting of an electric load is vital in the effective management of a power system, especially in flourishing regions. A new hybrid model called logarithmic spiral firefly algorithm-support vector regression (LS-FA-SVR) is proposed to promote the performance of electric load forecasting. The new hybrid model is acquired by combining the support vector regression, firefly algorithm, and logarithmic spiral. Half-hourly electric load from five main regions (NSW, QLD, SA, TAS, and VIC) of Australia are used to train and test the proposed model. By comparing the model results with observed data on the basis of the root mean squared error (RMSE), mean absolute error (MAE), and mean absolute percent error (MAPE), the performance of the proposed hybrid model is the most outstanding among all the considered benchmark models. Hence, the results of this study show that the hybrid model LS-FA-SVR is preferable and can be applied successfully because of its high accuracy.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3389/fenrg.2022.977854
- https://www.frontiersin.org/articles/10.3389/fenrg.2022.977854/pdf
- OA Status
- gold
- Cited By
- 12
- References
- 46
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4294218771
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4294218771Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3389/fenrg.2022.977854Digital Object Identifier
- Title
-
A hybrid SVR with the firefly algorithm enhanced by a logarithmic spiral for electric load forecastingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-09-02Full publication date if available
- Authors
-
Weiguo Zhang, Linlin Gu, Shi Yang, Xiaodong Luo, Hu ZhouList of authors in order
- Landing page
-
https://doi.org/10.3389/fenrg.2022.977854Publisher landing page
- PDF URL
-
https://www.frontiersin.org/articles/10.3389/fenrg.2022.977854/pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.frontiersin.org/articles/10.3389/fenrg.2022.977854/pdfDirect OA link when available
- Concepts
-
Firefly algorithm, Mean absolute percentage error, Support vector machine, Mean squared error, Benchmark (surveying), Logarithm, Algorithm, Spiral (railway), Logarithmic mean, Mean absolute error, Computer science, Mathematics, Statistics, Artificial intelligence, Particle swarm optimization, Geodesy, Mathematical analysis, GeographyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
12Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 4, 2023: 5, 2022: 1Per-year citation counts (last 5 years)
- References (count)
-
46Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4294218771 |
|---|---|
| doi | https://doi.org/10.3389/fenrg.2022.977854 |
| ids.doi | https://doi.org/10.3389/fenrg.2022.977854 |
| ids.openalex | https://openalex.org/W4294218771 |
| fwci | 1.29176064 |
| type | article |
| title | A hybrid SVR with the firefly algorithm enhanced by a logarithmic spiral for electric load forecasting |
| biblio.issue | |
| biblio.volume | 10 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11052 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Energy Load and Power Forecasting |
| topics[1].id | https://openalex.org/T12368 |
| topics[1].field.id | https://openalex.org/fields/18 |
| topics[1].field.display_name | Decision Sciences |
| topics[1].score | 0.9983000159263611 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1803 |
| topics[1].subfield.display_name | Management Science and Operations Research |
| topics[1].display_name | Grey System Theory Applications |
| topics[2].id | https://openalex.org/T11447 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9704999923706055 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1711 |
| topics[2].subfield.display_name | Signal Processing |
| topics[2].display_name | Blind Source Separation Techniques |
| is_xpac | False |
| apc_list.value | 2490 |
| apc_list.currency | USD |
| apc_list.value_usd | 2490 |
| apc_paid.value | 2490 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2490 |
| concepts[0].id | https://openalex.org/C154982244 |
| concepts[0].level | 3 |
| concepts[0].score | 0.9211766719818115 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5451844 |
| concepts[0].display_name | Firefly algorithm |
| concepts[1].id | https://openalex.org/C150217764 |
| concepts[1].level | 3 |
| concepts[1].score | 0.8237560987472534 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q6803607 |
| concepts[1].display_name | Mean absolute percentage error |
| concepts[2].id | https://openalex.org/C12267149 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7000726461410522 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[2].display_name | Support vector machine |
| concepts[3].id | https://openalex.org/C139945424 |
| concepts[3].level | 2 |
| concepts[3].score | 0.7000660300254822 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1940696 |
| concepts[3].display_name | Mean squared error |
| concepts[4].id | https://openalex.org/C185798385 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5894514322280884 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[4].display_name | Benchmark (surveying) |
| concepts[5].id | https://openalex.org/C39927690 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5305980443954468 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11197 |
| concepts[5].display_name | Logarithm |
| concepts[6].id | https://openalex.org/C11413529 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5138790607452393 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[6].display_name | Algorithm |
| concepts[7].id | https://openalex.org/C174128100 |
| concepts[7].level | 2 |
| concepts[7].score | 0.49223414063453674 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q846907 |
| concepts[7].display_name | Spiral (railway) |
| concepts[8].id | https://openalex.org/C116119841 |
| concepts[8].level | 3 |
| concepts[8].score | 0.4673379361629486 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q954389 |
| concepts[8].display_name | Logarithmic mean |
| concepts[9].id | https://openalex.org/C188154048 |
| concepts[9].level | 3 |
| concepts[9].score | 0.4512929916381836 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q6803609 |
| concepts[9].display_name | Mean absolute error |
| concepts[10].id | https://openalex.org/C41008148 |
| concepts[10].level | 0 |
| concepts[10].score | 0.40883076190948486 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[10].display_name | Computer science |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.3358367681503296 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C105795698 |
| concepts[12].level | 1 |
| concepts[12].score | 0.31760793924331665 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[12].display_name | Statistics |
| concepts[13].id | https://openalex.org/C154945302 |
| concepts[13].level | 1 |
| concepts[13].score | 0.25253546237945557 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[13].display_name | Artificial intelligence |
| concepts[14].id | https://openalex.org/C85617194 |
| concepts[14].level | 2 |
| concepts[14].score | 0.1409890353679657 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q2072794 |
| concepts[14].display_name | Particle swarm optimization |
| concepts[15].id | https://openalex.org/C13280743 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[15].display_name | Geodesy |
| concepts[16].id | https://openalex.org/C134306372 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[16].display_name | Mathematical analysis |
| concepts[17].id | https://openalex.org/C205649164 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[17].display_name | Geography |
| keywords[0].id | https://openalex.org/keywords/firefly-algorithm |
| keywords[0].score | 0.9211766719818115 |
| keywords[0].display_name | Firefly algorithm |
| keywords[1].id | https://openalex.org/keywords/mean-absolute-percentage-error |
| keywords[1].score | 0.8237560987472534 |
| keywords[1].display_name | Mean absolute percentage error |
| keywords[2].id | https://openalex.org/keywords/support-vector-machine |
| keywords[2].score | 0.7000726461410522 |
| keywords[2].display_name | Support vector machine |
| keywords[3].id | https://openalex.org/keywords/mean-squared-error |
| keywords[3].score | 0.7000660300254822 |
| keywords[3].display_name | Mean squared error |
| keywords[4].id | https://openalex.org/keywords/benchmark |
| keywords[4].score | 0.5894514322280884 |
| keywords[4].display_name | Benchmark (surveying) |
| keywords[5].id | https://openalex.org/keywords/logarithm |
| keywords[5].score | 0.5305980443954468 |
| keywords[5].display_name | Logarithm |
| keywords[6].id | https://openalex.org/keywords/algorithm |
| keywords[6].score | 0.5138790607452393 |
| keywords[6].display_name | Algorithm |
| keywords[7].id | https://openalex.org/keywords/spiral |
| keywords[7].score | 0.49223414063453674 |
| keywords[7].display_name | Spiral (railway) |
| keywords[8].id | https://openalex.org/keywords/logarithmic-mean |
| keywords[8].score | 0.4673379361629486 |
| keywords[8].display_name | Logarithmic mean |
| keywords[9].id | https://openalex.org/keywords/mean-absolute-error |
| keywords[9].score | 0.4512929916381836 |
| keywords[9].display_name | Mean absolute error |
| keywords[10].id | https://openalex.org/keywords/computer-science |
| keywords[10].score | 0.40883076190948486 |
| keywords[10].display_name | Computer science |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.3358367681503296 |
| keywords[11].display_name | Mathematics |
| keywords[12].id | https://openalex.org/keywords/statistics |
| keywords[12].score | 0.31760793924331665 |
| keywords[12].display_name | Statistics |
| keywords[13].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[13].score | 0.25253546237945557 |
| keywords[13].display_name | Artificial intelligence |
| keywords[14].id | https://openalex.org/keywords/particle-swarm-optimization |
| keywords[14].score | 0.1409890353679657 |
| keywords[14].display_name | Particle swarm optimization |
| language | en |
| locations[0].id | doi:10.3389/fenrg.2022.977854 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2595193159 |
| locations[0].source.issn | 2296-598X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2296-598X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Frontiers in Energy Research |
| locations[0].source.host_organization | https://openalex.org/P4310320527 |
| locations[0].source.host_organization_name | Frontiers Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320527 |
| locations[0].source.host_organization_lineage_names | Frontiers Media |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.frontiersin.org/articles/10.3389/fenrg.2022.977854/pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Frontiers in Energy Research |
| locations[0].landing_page_url | https://doi.org/10.3389/fenrg.2022.977854 |
| locations[1].id | pmh:oai:doaj.org/article:39294a7d79e8461bbcd5a07389730cb0 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Frontiers in Energy Research, Vol 10 (2022) |
| locations[1].landing_page_url | https://doaj.org/article/39294a7d79e8461bbcd5a07389730cb0 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5100381048 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2804-641X |
| authorships[0].author.display_name | Weiguo Zhang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I76569877 |
| authorships[0].affiliations[0].raw_affiliation_string | Southeast University, Nanjing, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I4210118629 |
| authorships[0].affiliations[1].raw_affiliation_string | Nari Technology Co., Ltd, Najing, China |
| authorships[0].institutions[0].id | https://openalex.org/I4210118629 |
| authorships[0].institutions[0].ror | https://ror.org/02egn3136 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210118629 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | NARI Group (China) |
| authorships[0].institutions[1].id | https://openalex.org/I76569877 |
| authorships[0].institutions[1].ror | https://ror.org/04ct4d772 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I76569877 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Southeast University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Weiguo Zhang |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Nari Technology Co., Ltd, Najing, China, Southeast University, Nanjing, China |
| authorships[1].author.id | https://openalex.org/A5100820585 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Linlin Gu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210118629 |
| authorships[1].affiliations[0].raw_affiliation_string | Nari Technology Co., Ltd, Najing, China |
| authorships[1].institutions[0].id | https://openalex.org/I4210118629 |
| authorships[1].institutions[0].ror | https://ror.org/02egn3136 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210118629 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | NARI Group (China) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Linlin Gu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Nari Technology Co., Ltd, Najing, China |
| authorships[2].author.id | https://openalex.org/A5100294614 |
| authorships[2].author.orcid | https://orcid.org/0009-0004-0662-4436 |
| authorships[2].author.display_name | Shi Yang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I17442442 |
| authorships[2].affiliations[0].raw_affiliation_string | State Grid Xiong'an Integrated Energy Service Co, Ltd, Baoding, China |
| authorships[2].institutions[0].id | https://openalex.org/I17442442 |
| authorships[2].institutions[0].ror | https://ror.org/05twwhs70 |
| authorships[2].institutions[0].type | company |
| authorships[2].institutions[0].lineage | https://openalex.org/I17442442 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | State Grid Corporation of China (China) |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yang Shi |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | State Grid Xiong'an Integrated Energy Service Co, Ltd, Baoding, China |
| authorships[3].author.id | https://openalex.org/A5086353664 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-8214-9874 |
| authorships[3].author.display_name | Xiaodong Luo |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I17442442 |
| authorships[3].affiliations[0].raw_affiliation_string | State Grid Xiong'an Integrated Energy Service Co, Ltd, Baoding, China |
| authorships[3].institutions[0].id | https://openalex.org/I17442442 |
| authorships[3].institutions[0].ror | https://ror.org/05twwhs70 |
| authorships[3].institutions[0].type | company |
| authorships[3].institutions[0].lineage | https://openalex.org/I17442442 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | State Grid Corporation of China (China) |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Xiaodong Luo |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | State Grid Xiong'an Integrated Energy Service Co, Ltd, Baoding, China |
| authorships[4].author.id | https://openalex.org/A5045323119 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Hu Zhou |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I41198531 |
| authorships[4].affiliations[0].raw_affiliation_string | Nanjing University of Posts and Telecommunications, Nanjing, China |
| authorships[4].institutions[0].id | https://openalex.org/I41198531 |
| authorships[4].institutions[0].ror | https://ror.org/043bpky34 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I41198531 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Nanjing University of Posts and Telecommunications |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Hu Zhou |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Nanjing University of Posts and Telecommunications, Nanjing, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.frontiersin.org/articles/10.3389/fenrg.2022.977854/pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A hybrid SVR with the firefly algorithm enhanced by a logarithmic spiral for electric load forecasting |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11052 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Energy Load and Power Forecasting |
| related_works | https://openalex.org/W3121369812, https://openalex.org/W3178576217, https://openalex.org/W4316658904, https://openalex.org/W4304606463, https://openalex.org/W2136152605, https://openalex.org/W2933969434, https://openalex.org/W4291801331, https://openalex.org/W4200374151, https://openalex.org/W2625413331, https://openalex.org/W4294218771 |
| cited_by_count | 12 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 4 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 5 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3389/fenrg.2022.977854 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2595193159 |
| best_oa_location.source.issn | 2296-598X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2296-598X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Frontiers in Energy Research |
| best_oa_location.source.host_organization | https://openalex.org/P4310320527 |
| best_oa_location.source.host_organization_name | Frontiers Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| best_oa_location.source.host_organization_lineage_names | Frontiers Media |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.frontiersin.org/articles/10.3389/fenrg.2022.977854/pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Frontiers in Energy Research |
| best_oa_location.landing_page_url | https://doi.org/10.3389/fenrg.2022.977854 |
| primary_location.id | doi:10.3389/fenrg.2022.977854 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2595193159 |
| primary_location.source.issn | 2296-598X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2296-598X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Frontiers in Energy Research |
| primary_location.source.host_organization | https://openalex.org/P4310320527 |
| primary_location.source.host_organization_name | Frontiers Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| primary_location.source.host_organization_lineage_names | Frontiers Media |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.frontiersin.org/articles/10.3389/fenrg.2022.977854/pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Frontiers in Energy Research |
| primary_location.landing_page_url | https://doi.org/10.3389/fenrg.2022.977854 |
| publication_date | 2022-09-02 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W3004437308, https://openalex.org/W2051502925, https://openalex.org/W2087347434, https://openalex.org/W2062156713, https://openalex.org/W3138408987, https://openalex.org/W2604099671, https://openalex.org/W3118794192, https://openalex.org/W2971126087, https://openalex.org/W2068438324, https://openalex.org/W2512474546, https://openalex.org/W1990966828, https://openalex.org/W2035737123, https://openalex.org/W1609200543, https://openalex.org/W2601171548, https://openalex.org/W2750492103, https://openalex.org/W414544266, https://openalex.org/W2290883490, https://openalex.org/W2061438946, https://openalex.org/W2241420790, https://openalex.org/W2737587394, https://openalex.org/W6676734833, https://openalex.org/W2297491514, https://openalex.org/W1144335011, https://openalex.org/W2509143831, https://openalex.org/W2883351698, https://openalex.org/W3126241812, https://openalex.org/W2549421055, https://openalex.org/W6661702673, https://openalex.org/W6763678577, https://openalex.org/W6640761805, https://openalex.org/W2154943049, https://openalex.org/W6631478494, https://openalex.org/W3124764833, https://openalex.org/W3165588125, https://openalex.org/W4291747055, https://openalex.org/W3193217591, https://openalex.org/W4226022175, https://openalex.org/W4225099239, https://openalex.org/W2973548560, https://openalex.org/W3132189050, https://openalex.org/W4224996688, https://openalex.org/W4283322815, https://openalex.org/W2110250181, https://openalex.org/W2044364928, https://openalex.org/W4230674625, https://openalex.org/W2460724340 |
| referenced_works_count | 46 |
| abstract_inverted_index.A | 20 |
| abstract_inverted_index.a | 13 |
| abstract_inverted_index.By | 83 |
| abstract_inverted_index.an | 3 |
| abstract_inverted_index.be | 144 |
| abstract_inverted_index.by | 48 |
| abstract_inverted_index.in | 8, 17 |
| abstract_inverted_index.is | 6, 32, 46, 118, 140 |
| abstract_inverted_index.of | 2, 12, 38, 72, 94, 113, 131, 148 |
| abstract_inverted_index.on | 91 |
| abstract_inverted_index.to | 34, 76 |
| abstract_inverted_index.SA, | 68 |
| abstract_inverted_index.The | 42 |
| abstract_inverted_index.all | 123 |
| abstract_inverted_index.and | 56, 70, 78, 105, 142 |
| abstract_inverted_index.are | 74 |
| abstract_inverted_index.can | 143 |
| abstract_inverted_index.its | 149 |
| abstract_inverted_index.new | 21, 43 |
| abstract_inverted_index.the | 9, 36, 50, 80, 85, 92, 95, 111, 114, 119, 124, 129, 136 |
| abstract_inverted_index.QLD, | 67 |
| abstract_inverted_index.TAS, | 69 |
| abstract_inverted_index.VIC) | 71 |
| abstract_inverted_index.data | 90 |
| abstract_inverted_index.five | 63 |
| abstract_inverted_index.from | 62 |
| abstract_inverted_index.high | 150 |
| abstract_inverted_index.load | 5, 40, 61 |
| abstract_inverted_index.main | 64 |
| abstract_inverted_index.mean | 97, 101, 106 |
| abstract_inverted_index.most | 120 |
| abstract_inverted_index.root | 96 |
| abstract_inverted_index.show | 134 |
| abstract_inverted_index.test | 79 |
| abstract_inverted_index.that | 135 |
| abstract_inverted_index.this | 132 |
| abstract_inverted_index.used | 75 |
| abstract_inverted_index.with | 88 |
| abstract_inverted_index.(NSW, | 66 |
| abstract_inverted_index.among | 122 |
| abstract_inverted_index.basis | 93 |
| abstract_inverted_index.error | 99, 103, 109 |
| abstract_inverted_index.model | 23, 45, 86, 117, 138 |
| abstract_inverted_index.power | 14 |
| abstract_inverted_index.study | 133 |
| abstract_inverted_index.train | 77 |
| abstract_inverted_index.vital | 7 |
| abstract_inverted_index.(MAE), | 104 |
| abstract_inverted_index.Hence, | 128 |
| abstract_inverted_index.called | 24 |
| abstract_inverted_index.hybrid | 22, 44, 116, 137 |
| abstract_inverted_index.model. | 82 |
| abstract_inverted_index.spiral | 26 |
| abstract_inverted_index.vector | 29, 52 |
| abstract_inverted_index.(MAPE), | 110 |
| abstract_inverted_index.(RMSE), | 100 |
| abstract_inverted_index.applied | 145 |
| abstract_inverted_index.because | 147 |
| abstract_inverted_index.firefly | 27, 54 |
| abstract_inverted_index.models. | 127 |
| abstract_inverted_index.percent | 108 |
| abstract_inverted_index.promote | 35 |
| abstract_inverted_index.regions | 65 |
| abstract_inverted_index.results | 87, 130 |
| abstract_inverted_index.spiral. | 58 |
| abstract_inverted_index.squared | 98 |
| abstract_inverted_index.support | 51 |
| abstract_inverted_index.system, | 15 |
| abstract_inverted_index.Accurate | 0 |
| abstract_inverted_index.absolute | 102, 107 |
| abstract_inverted_index.acquired | 47 |
| abstract_inverted_index.electric | 4, 39, 60 |
| abstract_inverted_index.observed | 89 |
| abstract_inverted_index.proposed | 33, 81, 115 |
| abstract_inverted_index.regions. | 19 |
| abstract_inverted_index.Australia | 73 |
| abstract_inverted_index.LS-FA-SVR | 139 |
| abstract_inverted_index.accuracy. | 151 |
| abstract_inverted_index.benchmark | 126 |
| abstract_inverted_index.combining | 49 |
| abstract_inverted_index.comparing | 84 |
| abstract_inverted_index.effective | 10 |
| abstract_inverted_index.algorithm, | 55 |
| abstract_inverted_index.considered | 125 |
| abstract_inverted_index.especially | 16 |
| abstract_inverted_index.management | 11 |
| abstract_inverted_index.preferable | 141 |
| abstract_inverted_index.regression | 30 |
| abstract_inverted_index.(LS-FA-SVR) | 31 |
| abstract_inverted_index.Half-hourly | 59 |
| abstract_inverted_index.flourishing | 18 |
| abstract_inverted_index.forecasting | 1 |
| abstract_inverted_index.logarithmic | 25, 57 |
| abstract_inverted_index.outstanding | 121 |
| abstract_inverted_index.performance | 37, 112 |
| abstract_inverted_index.regression, | 53 |
| abstract_inverted_index.forecasting. | 41 |
| abstract_inverted_index.successfully | 146 |
| abstract_inverted_index.algorithm-support | 28 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5100381048 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I4210118629, https://openalex.org/I76569877 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.6800000071525574 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.78203801 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |