A large collection of bioinformatics question-query pairs over federated knowledge graphs: methodology and applications Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2410.06010
Background. In the last decades, several life science resources have structured data using the same framework and made these accessible using the same query language to facilitate interoperability. Knowledge graphs have seen increased adoption in bioinformatics due to their advantages for representing data in a generic graph format. For example, yummydata.org catalogs more than 60 knowledge graphs accessible through SPARQL, a technical query language. Although SPARQL allows powerful, expressive queries, even across physically distributed knowledge graphs, formulating such queries is a challenge for most users. Therefore, to guide users in retrieving the relevant data, many of these resources provide representative examples. These examples can also be an important source of information for machine learning, if a sufficiently large number of examples are provided and published in a common, machine-readable and standardized format across different resources. Findings. We introduce a large collection of human-written natural language questions and their corresponding SPARQL queries over federated bioinformatics knowledge graphs (KGs) collected for several years across different research groups at the SIB Swiss Institute of Bioinformatics. The collection comprises more than 1000 example questions and queries, including 65 federated queries. We propose a methodology to uniformly represent the examples with minimal metadata, based on existing standards. Furthermore, we introduce an extensive set of open-source applications, including query graph visualizations and smart query editors, easily reusable by KG maintainers who adopt the proposed methodology. Conclusions. We encourage the community to adopt and extend the proposed methodology, towards richer KG metadata and improved Semantic Web services.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2410.06010
- https://arxiv.org/pdf/2410.06010
- OA Status
- green
- Cited By
- 2
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403344289
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403344289Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2410.06010Digital Object Identifier
- Title
-
A large collection of bioinformatics question-query pairs over federated knowledge graphs: methodology and applicationsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-10-08Full publication date if available
- Authors
-
Jerven Bolleman, Vincent Emonet, Adrian Altenhoff, Amos Bairoch, Marie-Claude Blatter, Alan Bridge, Séverine Duvaud, Elisabeth Gasteiger, Dmitry Kuznetsov, Sébastien Moretti, Pierre-André Michel, Anne Morgat, Marco Pagni, Nicole Redaschi, Monique Zahn‐Zabal, Tarcisio Mendes de Farias, Ana Claudia SimaList of authors in order
- Landing page
-
https://arxiv.org/abs/2410.06010Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2410.06010Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2410.06010Direct OA link when available
- Concepts
-
Computer science, Information retrieval, Data mining, Knowledge graph, Data scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 2Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403344289 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2410.06010 |
| ids.doi | https://doi.org/10.48550/arxiv.2410.06010 |
| ids.openalex | https://openalex.org/W4403344289 |
| fwci | |
| type | preprint |
| title | A large collection of bioinformatics question-query pairs over federated knowledge graphs: methodology and applications |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10887 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.9789999723434448 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1312 |
| topics[0].subfield.display_name | Molecular Biology |
| topics[0].display_name | Bioinformatics and Genomic Networks |
| topics[1].id | https://openalex.org/T11273 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.972100019454956 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Advanced Graph Neural Networks |
| topics[2].id | https://openalex.org/T11710 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.970300018787384 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1312 |
| topics[2].subfield.display_name | Molecular Biology |
| topics[2].display_name | Biomedical Text Mining and Ontologies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7242891788482666 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C23123220 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5050821900367737 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q816826 |
| concepts[1].display_name | Information retrieval |
| concepts[2].id | https://openalex.org/C124101348 |
| concepts[2].level | 1 |
| concepts[2].score | 0.425589382648468 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[2].display_name | Data mining |
| concepts[3].id | https://openalex.org/C2987255567 |
| concepts[3].level | 2 |
| concepts[3].score | 0.41614168882369995 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q33002955 |
| concepts[3].display_name | Knowledge graph |
| concepts[4].id | https://openalex.org/C2522767166 |
| concepts[4].level | 1 |
| concepts[4].score | 0.33010101318359375 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[4].display_name | Data science |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7242891788482666 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/information-retrieval |
| keywords[1].score | 0.5050821900367737 |
| keywords[1].display_name | Information retrieval |
| keywords[2].id | https://openalex.org/keywords/data-mining |
| keywords[2].score | 0.425589382648468 |
| keywords[2].display_name | Data mining |
| keywords[3].id | https://openalex.org/keywords/knowledge-graph |
| keywords[3].score | 0.41614168882369995 |
| keywords[3].display_name | Knowledge graph |
| keywords[4].id | https://openalex.org/keywords/data-science |
| keywords[4].score | 0.33010101318359375 |
| keywords[4].display_name | Data science |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2410.06010 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2410.06010 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2410.06010 |
| locations[1].id | doi:10.48550/arxiv.2410.06010 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2410.06010 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5078283120 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7449-1266 |
| authorships[0].author.display_name | Jerven Bolleman |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Bolleman, Jerven |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5064028156 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1501-1082 |
| authorships[1].author.display_name | Vincent Emonet |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Emonet, Vincent |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5084558956 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7492-1273 |
| authorships[2].author.display_name | Adrian Altenhoff |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Altenhoff, Adrian |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5069843378 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-2826-6444 |
| authorships[3].author.display_name | Amos Bairoch |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Bairoch, Amos |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5064235679 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-7474-1499 |
| authorships[4].author.display_name | Marie-Claude Blatter |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Blatter, Marie-Claude |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5090916579 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-2148-9135 |
| authorships[5].author.display_name | Alan Bridge |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Bridge, Alan |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5012838234 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-7892-9678 |
| authorships[6].author.display_name | Séverine Duvaud |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Duvaud, Severine |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5051386555 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-1829-162X |
| authorships[7].author.display_name | Elisabeth Gasteiger |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Gasteiger, Elisabeth |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5023325161 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-9972-947X |
| authorships[8].author.display_name | Dmitry Kuznetsov |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Kuznetsov, Dmitry |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5039131441 |
| authorships[9].author.orcid | https://orcid.org/0000-0003-3947-488X |
| authorships[9].author.display_name | Sébastien Moretti |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Moretti, Sebastien |
| authorships[9].is_corresponding | False |
| authorships[10].author.id | https://openalex.org/A5086411804 |
| authorships[10].author.orcid | https://orcid.org/0000-0002-7023-1045 |
| authorships[10].author.display_name | Pierre-André Michel |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Michel, Pierre-Andre |
| authorships[10].is_corresponding | False |
| authorships[11].author.id | https://openalex.org/A5091324355 |
| authorships[11].author.orcid | https://orcid.org/0000-0002-1216-2969 |
| authorships[11].author.display_name | Anne Morgat |
| authorships[11].author_position | middle |
| authorships[11].raw_author_name | Morgat, Anne |
| authorships[11].is_corresponding | False |
| authorships[12].author.id | https://openalex.org/A5006006798 |
| authorships[12].author.orcid | https://orcid.org/0000-0001-9292-9463 |
| authorships[12].author.display_name | Marco Pagni |
| authorships[12].author_position | middle |
| authorships[12].raw_author_name | Pagni, Marco |
| authorships[12].is_corresponding | False |
| authorships[13].author.id | https://openalex.org/A5055073392 |
| authorships[13].author.orcid | https://orcid.org/0000-0001-8890-2268 |
| authorships[13].author.display_name | Nicole Redaschi |
| authorships[13].author_position | middle |
| authorships[13].raw_author_name | Redaschi, Nicole |
| authorships[13].is_corresponding | False |
| authorships[14].author.id | https://openalex.org/A5035035034 |
| authorships[14].author.orcid | https://orcid.org/0000-0001-7961-6091 |
| authorships[14].author.display_name | Monique Zahn‐Zabal |
| authorships[14].author_position | middle |
| authorships[14].raw_author_name | Zahn-Zabal, Monique |
| authorships[14].is_corresponding | False |
| authorships[15].author.id | https://openalex.org/A5018439383 |
| authorships[15].author.orcid | https://orcid.org/0000-0002-3175-5372 |
| authorships[15].author.display_name | Tarcisio Mendes de Farias |
| authorships[15].author_position | middle |
| authorships[15].raw_author_name | de Farias, Tarcisio Mendes |
| authorships[15].is_corresponding | False |
| authorships[16].author.id | https://openalex.org/A5032183252 |
| authorships[16].author.orcid | |
| authorships[16].author.display_name | Ana Claudia Sima |
| authorships[16].author_position | last |
| authorships[16].raw_author_name | Sima, Ana Claudia |
| authorships[16].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2410.06010 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A large collection of bioinformatics question-query pairs over federated knowledge graphs: methodology and applications |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10887 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.9789999723434448 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1312 |
| primary_topic.subfield.display_name | Molecular Biology |
| primary_topic.display_name | Bioinformatics and Genomic Networks |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052, https://openalex.org/W4402327032, https://openalex.org/W2382290278 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2410.06010 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2410.06010 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2410.06010 |
| primary_location.id | pmh:oai:arXiv.org:2410.06010 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2410.06010 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2410.06010 |
| publication_date | 2024-10-08 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 44, 60, 80, 115, 126, 138, 188 |
| abstract_inverted_index.60 | 54 |
| abstract_inverted_index.65 | 183 |
| abstract_inverted_index.In | 1 |
| abstract_inverted_index.KG | 222, 243 |
| abstract_inverted_index.We | 136, 186, 230 |
| abstract_inverted_index.an | 106, 205 |
| abstract_inverted_index.at | 165 |
| abstract_inverted_index.be | 105 |
| abstract_inverted_index.by | 221 |
| abstract_inverted_index.if | 114 |
| abstract_inverted_index.in | 34, 43, 89, 125 |
| abstract_inverted_index.is | 79 |
| abstract_inverted_index.of | 95, 109, 119, 141, 170, 208 |
| abstract_inverted_index.on | 199 |
| abstract_inverted_index.to | 25, 37, 86, 190, 234 |
| abstract_inverted_index.we | 203 |
| abstract_inverted_index.For | 48 |
| abstract_inverted_index.SIB | 167 |
| abstract_inverted_index.The | 172 |
| abstract_inverted_index.Web | 248 |
| abstract_inverted_index.and | 16, 123, 129, 146, 180, 215, 236, 245 |
| abstract_inverted_index.are | 121 |
| abstract_inverted_index.can | 103 |
| abstract_inverted_index.due | 36 |
| abstract_inverted_index.for | 40, 82, 111, 158 |
| abstract_inverted_index.set | 207 |
| abstract_inverted_index.the | 2, 13, 21, 91, 166, 193, 226, 232, 238 |
| abstract_inverted_index.who | 224 |
| abstract_inverted_index.1000 | 177 |
| abstract_inverted_index.also | 104 |
| abstract_inverted_index.data | 11, 42 |
| abstract_inverted_index.even | 70 |
| abstract_inverted_index.have | 9, 30 |
| abstract_inverted_index.last | 3 |
| abstract_inverted_index.life | 6 |
| abstract_inverted_index.made | 17 |
| abstract_inverted_index.many | 94 |
| abstract_inverted_index.more | 52, 175 |
| abstract_inverted_index.most | 83 |
| abstract_inverted_index.over | 151 |
| abstract_inverted_index.same | 14, 22 |
| abstract_inverted_index.seen | 31 |
| abstract_inverted_index.such | 77 |
| abstract_inverted_index.than | 53, 176 |
| abstract_inverted_index.with | 195 |
| abstract_inverted_index.(KGs) | 156 |
| abstract_inverted_index.Swiss | 168 |
| abstract_inverted_index.These | 101 |
| abstract_inverted_index.adopt | 225, 235 |
| abstract_inverted_index.based | 198 |
| abstract_inverted_index.data, | 93 |
| abstract_inverted_index.graph | 46, 213 |
| abstract_inverted_index.guide | 87 |
| abstract_inverted_index.large | 117, 139 |
| abstract_inverted_index.query | 23, 62, 212, 217 |
| abstract_inverted_index.smart | 216 |
| abstract_inverted_index.their | 38, 147 |
| abstract_inverted_index.these | 18, 96 |
| abstract_inverted_index.users | 88 |
| abstract_inverted_index.using | 12, 20 |
| abstract_inverted_index.years | 160 |
| abstract_inverted_index.SPARQL | 65, 149 |
| abstract_inverted_index.across | 71, 132, 161 |
| abstract_inverted_index.allows | 66 |
| abstract_inverted_index.easily | 219 |
| abstract_inverted_index.extend | 237 |
| abstract_inverted_index.format | 131 |
| abstract_inverted_index.graphs | 29, 56, 155 |
| abstract_inverted_index.groups | 164 |
| abstract_inverted_index.number | 118 |
| abstract_inverted_index.richer | 242 |
| abstract_inverted_index.source | 108 |
| abstract_inverted_index.users. | 84 |
| abstract_inverted_index.SPARQL, | 59 |
| abstract_inverted_index.common, | 127 |
| abstract_inverted_index.example | 178 |
| abstract_inverted_index.format. | 47 |
| abstract_inverted_index.generic | 45 |
| abstract_inverted_index.graphs, | 75 |
| abstract_inverted_index.machine | 112 |
| abstract_inverted_index.minimal | 196 |
| abstract_inverted_index.natural | 143 |
| abstract_inverted_index.propose | 187 |
| abstract_inverted_index.provide | 98 |
| abstract_inverted_index.queries | 78, 150 |
| abstract_inverted_index.science | 7 |
| abstract_inverted_index.several | 5, 159 |
| abstract_inverted_index.through | 58 |
| abstract_inverted_index.towards | 241 |
| abstract_inverted_index.Although | 64 |
| abstract_inverted_index.Semantic | 247 |
| abstract_inverted_index.adoption | 33 |
| abstract_inverted_index.catalogs | 51 |
| abstract_inverted_index.decades, | 4 |
| abstract_inverted_index.editors, | 218 |
| abstract_inverted_index.example, | 49 |
| abstract_inverted_index.examples | 102, 120, 194 |
| abstract_inverted_index.existing | 200 |
| abstract_inverted_index.improved | 246 |
| abstract_inverted_index.language | 24, 144 |
| abstract_inverted_index.metadata | 244 |
| abstract_inverted_index.proposed | 227, 239 |
| abstract_inverted_index.provided | 122 |
| abstract_inverted_index.queries, | 69, 181 |
| abstract_inverted_index.queries. | 185 |
| abstract_inverted_index.relevant | 92 |
| abstract_inverted_index.research | 163 |
| abstract_inverted_index.reusable | 220 |
| abstract_inverted_index.Findings. | 135 |
| abstract_inverted_index.Institute | 169 |
| abstract_inverted_index.Knowledge | 28 |
| abstract_inverted_index.challenge | 81 |
| abstract_inverted_index.collected | 157 |
| abstract_inverted_index.community | 233 |
| abstract_inverted_index.comprises | 174 |
| abstract_inverted_index.different | 133, 162 |
| abstract_inverted_index.encourage | 231 |
| abstract_inverted_index.examples. | 100 |
| abstract_inverted_index.extensive | 206 |
| abstract_inverted_index.federated | 152, 184 |
| abstract_inverted_index.framework | 15 |
| abstract_inverted_index.important | 107 |
| abstract_inverted_index.including | 182, 211 |
| abstract_inverted_index.increased | 32 |
| abstract_inverted_index.introduce | 137, 204 |
| abstract_inverted_index.knowledge | 55, 74, 154 |
| abstract_inverted_index.language. | 63 |
| abstract_inverted_index.learning, | 113 |
| abstract_inverted_index.metadata, | 197 |
| abstract_inverted_index.powerful, | 67 |
| abstract_inverted_index.published | 124 |
| abstract_inverted_index.questions | 145, 179 |
| abstract_inverted_index.represent | 192 |
| abstract_inverted_index.resources | 8, 97 |
| abstract_inverted_index.services. | 249 |
| abstract_inverted_index.technical | 61 |
| abstract_inverted_index.uniformly | 191 |
| abstract_inverted_index.Therefore, | 85 |
| abstract_inverted_index.accessible | 19, 57 |
| abstract_inverted_index.advantages | 39 |
| abstract_inverted_index.collection | 140, 173 |
| abstract_inverted_index.expressive | 68 |
| abstract_inverted_index.facilitate | 26 |
| abstract_inverted_index.physically | 72 |
| abstract_inverted_index.resources. | 134 |
| abstract_inverted_index.retrieving | 90 |
| abstract_inverted_index.standards. | 201 |
| abstract_inverted_index.structured | 10 |
| abstract_inverted_index.Background. | 0 |
| abstract_inverted_index.distributed | 73 |
| abstract_inverted_index.formulating | 76 |
| abstract_inverted_index.information | 110 |
| abstract_inverted_index.maintainers | 223 |
| abstract_inverted_index.methodology | 189 |
| abstract_inverted_index.open-source | 209 |
| abstract_inverted_index.Conclusions. | 229 |
| abstract_inverted_index.Furthermore, | 202 |
| abstract_inverted_index.methodology, | 240 |
| abstract_inverted_index.methodology. | 228 |
| abstract_inverted_index.representing | 41 |
| abstract_inverted_index.standardized | 130 |
| abstract_inverted_index.sufficiently | 116 |
| abstract_inverted_index.applications, | 210 |
| abstract_inverted_index.corresponding | 148 |
| abstract_inverted_index.human-written | 142 |
| abstract_inverted_index.yummydata.org | 50 |
| abstract_inverted_index.bioinformatics | 35, 153 |
| abstract_inverted_index.representative | 99 |
| abstract_inverted_index.visualizations | 214 |
| abstract_inverted_index.Bioinformatics. | 171 |
| abstract_inverted_index.machine-readable | 128 |
| abstract_inverted_index.interoperability. | 27 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 17 |
| citation_normalized_percentile |