A Large Dataset for Improving Patch Matching Article Swipe
YOU?
·
· 2018
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1801.01466
We propose a new dataset for learning local image descriptors which can be used for significantly improved patch matching. Our proposed dataset consists of an order of magnitude more number of scenes, images, and positive and negative correspondences compared to the currently available Multi-View Stereo (MVS) dataset from Brown et al. The new dataset also has better coverage of the overall viewpoint, scale, and lighting changes in comparison to the MVS dataset. Our dataset also provides supplementary information like RGB patches with scale and rotations values, and intrinsic and extrinsic camera parameters which as shown later can be used to customize training data as per application. We train an existing state-of-the-art model on our dataset and evaluate on publicly available benchmarks such as HPatches dataset and Strecha et al.\cite{strecha} to quantify the image descriptor performance. Experimental evaluations show that the descriptors trained using our proposed dataset outperform the current state-of-the-art descriptors trained on MVS by 8%, 4% and 10% on matching, verification and retrieval tasks respectively on the HPatches dataset. Similarly on the Strecha dataset, we see an improvement of 3-5% for the matching task in non-planar scenes.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/1801.01466
- https://arxiv.org/pdf/1801.01466
- OA Status
- green
- Cited By
- 13
- References
- 14
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2782124689
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2782124689Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.1801.01466Digital Object Identifier
- Title
-
A Large Dataset for Improving Patch MatchingWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2018Year of publication
- Publication date
-
2018-01-04Full publication date if available
- Authors
-
Rahul Mitra, Nehal Doiphode, Utkarsh Gautam, Sanath Narayan, Shuaib Ahmed, Sharat Chandran, Arjun JainList of authors in order
- Landing page
-
https://arxiv.org/abs/1801.01466Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/1801.01466Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1801.01466Direct OA link when available
- Concepts
-
Computer science, Matching (statistics), Artificial intelligence, Pattern recognition (psychology), RGB color model, Task (project management), Scale (ratio), Image (mathematics), Mathematics, Geography, Statistics, Management, Economics, CartographyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
13Total citation count in OpenAlex
- Citations by year (recent)
-
2020: 6, 2019: 6, 2018: 1Per-year citation counts (last 5 years)
- References (count)
-
14Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2782124689 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.1801.01466 |
| ids.doi | https://doi.org/10.48550/arxiv.1801.01466 |
| ids.mag | 2782124689 |
| ids.openalex | https://openalex.org/W2782124689 |
| fwci | |
| type | preprint |
| title | A Large Dataset for Improving Patch Matching |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10627 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Image and Video Retrieval Techniques |
| topics[1].id | https://openalex.org/T10191 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9986000061035156 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2202 |
| topics[1].subfield.display_name | Aerospace Engineering |
| topics[1].display_name | Robotics and Sensor-Based Localization |
| topics[2].id | https://openalex.org/T10531 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9957000017166138 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Advanced Vision and Imaging |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7869313955307007 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C165064840 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7315727472305298 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1321061 |
| concepts[1].display_name | Matching (statistics) |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.7153045535087585 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C153180895 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5778318047523499 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[3].display_name | Pattern recognition (psychology) |
| concepts[4].id | https://openalex.org/C82990744 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5384658575057983 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q166194 |
| concepts[4].display_name | RGB color model |
| concepts[5].id | https://openalex.org/C2780451532 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5139419436454773 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[5].display_name | Task (project management) |
| concepts[6].id | https://openalex.org/C2778755073 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5076266527175903 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q10858537 |
| concepts[6].display_name | Scale (ratio) |
| concepts[7].id | https://openalex.org/C115961682 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4889306128025055 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[7].display_name | Image (mathematics) |
| concepts[8].id | https://openalex.org/C33923547 |
| concepts[8].level | 0 |
| concepts[8].score | 0.12987133860588074 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[8].display_name | Mathematics |
| concepts[9].id | https://openalex.org/C205649164 |
| concepts[9].level | 0 |
| concepts[9].score | 0.06882977485656738 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[9].display_name | Geography |
| concepts[10].id | https://openalex.org/C105795698 |
| concepts[10].level | 1 |
| concepts[10].score | 0.06683176755905151 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[10].display_name | Statistics |
| concepts[11].id | https://openalex.org/C187736073 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2920921 |
| concepts[11].display_name | Management |
| concepts[12].id | https://openalex.org/C162324750 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[12].display_name | Economics |
| concepts[13].id | https://openalex.org/C58640448 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q42515 |
| concepts[13].display_name | Cartography |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7869313955307007 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/matching |
| keywords[1].score | 0.7315727472305298 |
| keywords[1].display_name | Matching (statistics) |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.7153045535087585 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/pattern-recognition |
| keywords[3].score | 0.5778318047523499 |
| keywords[3].display_name | Pattern recognition (psychology) |
| keywords[4].id | https://openalex.org/keywords/rgb-color-model |
| keywords[4].score | 0.5384658575057983 |
| keywords[4].display_name | RGB color model |
| keywords[5].id | https://openalex.org/keywords/task |
| keywords[5].score | 0.5139419436454773 |
| keywords[5].display_name | Task (project management) |
| keywords[6].id | https://openalex.org/keywords/scale |
| keywords[6].score | 0.5076266527175903 |
| keywords[6].display_name | Scale (ratio) |
| keywords[7].id | https://openalex.org/keywords/image |
| keywords[7].score | 0.4889306128025055 |
| keywords[7].display_name | Image (mathematics) |
| keywords[8].id | https://openalex.org/keywords/mathematics |
| keywords[8].score | 0.12987133860588074 |
| keywords[8].display_name | Mathematics |
| keywords[9].id | https://openalex.org/keywords/geography |
| keywords[9].score | 0.06882977485656738 |
| keywords[9].display_name | Geography |
| keywords[10].id | https://openalex.org/keywords/statistics |
| keywords[10].score | 0.06683176755905151 |
| keywords[10].display_name | Statistics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:1801.01466 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/1801.01466 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/1801.01466 |
| locations[1].id | doi:10.48550/arxiv.1801.01466 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.1801.01466 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5102897810 |
| authorships[0].author.orcid | https://orcid.org/0009-0009-3506-7612 |
| authorships[0].author.display_name | Rahul Mitra |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Rahul Mitra |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5011626061 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Nehal Doiphode |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Nehal Doiphode |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5052652945 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Utkarsh Gautam |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Utkarsh Gautam |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5090466272 |
| authorships[3].author.orcid | https://orcid.org/0009-0001-7880-3239 |
| authorships[3].author.display_name | Sanath Narayan |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Sanath Narayan |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5112491221 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Shuaib Ahmed |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Shuaib Ahmed |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5102706610 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-2586-2032 |
| authorships[5].author.display_name | Sharat Chandran |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Sharat Chandran |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5113717585 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-4119-6217 |
| authorships[6].author.display_name | Arjun Jain |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Arjun Jain |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1801.01466 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Large Dataset for Improving Patch Matching |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10627 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Image and Video Retrieval Techniques |
| related_works | https://openalex.org/W1972035260, https://openalex.org/W2486460843, https://openalex.org/W2168109476, https://openalex.org/W1968121071, https://openalex.org/W2020254986, https://openalex.org/W2686985752, https://openalex.org/W1992540108, https://openalex.org/W4301594054, https://openalex.org/W2794488505, https://openalex.org/W2074225891 |
| cited_by_count | 13 |
| counts_by_year[0].year | 2020 |
| counts_by_year[0].cited_by_count | 6 |
| counts_by_year[1].year | 2019 |
| counts_by_year[1].cited_by_count | 6 |
| counts_by_year[2].year | 2018 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:1801.01466 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1801.01466 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1801.01466 |
| primary_location.id | pmh:oai:arXiv.org:1801.01466 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/1801.01466 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/1801.01466 |
| publication_date | 2018-01-04 |
| publication_year | 2018 |
| referenced_works | https://openalex.org/W2177274842, https://openalex.org/W2115362620, https://openalex.org/W2128237624, https://openalex.org/W2963157250, https://openalex.org/W1955055330, https://openalex.org/W2066941820, https://openalex.org/W2963748588, https://openalex.org/W1869500417, https://openalex.org/W2117539524, https://openalex.org/W1929856797, https://openalex.org/W2962708773, https://openalex.org/W2126060993, https://openalex.org/W2163096995, https://openalex.org/W2612112834 |
| referenced_works_count | 14 |
| abstract_inverted_index.a | 2 |
| abstract_inverted_index.4% | 156 |
| abstract_inverted_index.We | 0, 106 |
| abstract_inverted_index.an | 24, 108, 177 |
| abstract_inverted_index.as | 93, 103, 122 |
| abstract_inverted_index.be | 12, 97 |
| abstract_inverted_index.by | 154 |
| abstract_inverted_index.et | 49, 127 |
| abstract_inverted_index.in | 66, 185 |
| abstract_inverted_index.of | 23, 26, 30, 58, 179 |
| abstract_inverted_index.on | 112, 117, 152, 159, 166, 171 |
| abstract_inverted_index.to | 39, 68, 99, 129 |
| abstract_inverted_index.we | 175 |
| abstract_inverted_index.10% | 158 |
| abstract_inverted_index.8%, | 155 |
| abstract_inverted_index.MVS | 70, 153 |
| abstract_inverted_index.Our | 19, 72 |
| abstract_inverted_index.RGB | 79 |
| abstract_inverted_index.The | 51 |
| abstract_inverted_index.al. | 50 |
| abstract_inverted_index.and | 33, 35, 63, 83, 86, 88, 115, 125, 157, 162 |
| abstract_inverted_index.can | 11, 96 |
| abstract_inverted_index.for | 5, 14, 181 |
| abstract_inverted_index.has | 55 |
| abstract_inverted_index.new | 3, 52 |
| abstract_inverted_index.our | 113, 143 |
| abstract_inverted_index.per | 104 |
| abstract_inverted_index.see | 176 |
| abstract_inverted_index.the | 40, 59, 69, 131, 139, 147, 167, 172, 182 |
| abstract_inverted_index.3-5% | 180 |
| abstract_inverted_index.also | 54, 74 |
| abstract_inverted_index.data | 102 |
| abstract_inverted_index.from | 47 |
| abstract_inverted_index.like | 78 |
| abstract_inverted_index.more | 28 |
| abstract_inverted_index.show | 137 |
| abstract_inverted_index.such | 121 |
| abstract_inverted_index.task | 184 |
| abstract_inverted_index.that | 138 |
| abstract_inverted_index.used | 13, 98 |
| abstract_inverted_index.with | 81 |
| abstract_inverted_index.(MVS) | 45 |
| abstract_inverted_index.Brown | 48 |
| abstract_inverted_index.image | 8, 132 |
| abstract_inverted_index.later | 95 |
| abstract_inverted_index.local | 7 |
| abstract_inverted_index.model | 111 |
| abstract_inverted_index.order | 25 |
| abstract_inverted_index.patch | 17 |
| abstract_inverted_index.scale | 82 |
| abstract_inverted_index.shown | 94 |
| abstract_inverted_index.tasks | 164 |
| abstract_inverted_index.train | 107 |
| abstract_inverted_index.using | 142 |
| abstract_inverted_index.which | 10, 92 |
| abstract_inverted_index.Stereo | 44 |
| abstract_inverted_index.better | 56 |
| abstract_inverted_index.camera | 90 |
| abstract_inverted_index.number | 29 |
| abstract_inverted_index.scale, | 62 |
| abstract_inverted_index.Strecha | 126, 173 |
| abstract_inverted_index.changes | 65 |
| abstract_inverted_index.current | 148 |
| abstract_inverted_index.dataset | 4, 21, 46, 53, 73, 114, 124, 145 |
| abstract_inverted_index.images, | 32 |
| abstract_inverted_index.overall | 60 |
| abstract_inverted_index.patches | 80 |
| abstract_inverted_index.propose | 1 |
| abstract_inverted_index.scenes, | 31 |
| abstract_inverted_index.scenes. | 187 |
| abstract_inverted_index.trained | 141, 151 |
| abstract_inverted_index.values, | 85 |
| abstract_inverted_index.HPatches | 123, 168 |
| abstract_inverted_index.compared | 38 |
| abstract_inverted_index.consists | 22 |
| abstract_inverted_index.coverage | 57 |
| abstract_inverted_index.dataset, | 174 |
| abstract_inverted_index.dataset. | 71, 169 |
| abstract_inverted_index.evaluate | 116 |
| abstract_inverted_index.existing | 109 |
| abstract_inverted_index.improved | 16 |
| abstract_inverted_index.learning | 6 |
| abstract_inverted_index.lighting | 64 |
| abstract_inverted_index.matching | 183 |
| abstract_inverted_index.negative | 36 |
| abstract_inverted_index.positive | 34 |
| abstract_inverted_index.proposed | 20, 144 |
| abstract_inverted_index.provides | 75 |
| abstract_inverted_index.publicly | 118 |
| abstract_inverted_index.quantify | 130 |
| abstract_inverted_index.training | 101 |
| abstract_inverted_index.Similarly | 170 |
| abstract_inverted_index.available | 42, 119 |
| abstract_inverted_index.currently | 41 |
| abstract_inverted_index.customize | 100 |
| abstract_inverted_index.extrinsic | 89 |
| abstract_inverted_index.intrinsic | 87 |
| abstract_inverted_index.magnitude | 27 |
| abstract_inverted_index.matching, | 160 |
| abstract_inverted_index.matching. | 18 |
| abstract_inverted_index.retrieval | 163 |
| abstract_inverted_index.rotations | 84 |
| abstract_inverted_index.Multi-View | 43 |
| abstract_inverted_index.benchmarks | 120 |
| abstract_inverted_index.comparison | 67 |
| abstract_inverted_index.descriptor | 133 |
| abstract_inverted_index.non-planar | 186 |
| abstract_inverted_index.outperform | 146 |
| abstract_inverted_index.parameters | 91 |
| abstract_inverted_index.viewpoint, | 61 |
| abstract_inverted_index.descriptors | 9, 140, 150 |
| abstract_inverted_index.evaluations | 136 |
| abstract_inverted_index.improvement | 178 |
| abstract_inverted_index.information | 77 |
| abstract_inverted_index.Experimental | 135 |
| abstract_inverted_index.application. | 105 |
| abstract_inverted_index.performance. | 134 |
| abstract_inverted_index.respectively | 165 |
| abstract_inverted_index.verification | 161 |
| abstract_inverted_index.significantly | 15 |
| abstract_inverted_index.supplementary | 76 |
| abstract_inverted_index.correspondences | 37 |
| abstract_inverted_index.state-of-the-art | 110, 149 |
| abstract_inverted_index.al.\cite{strecha} | 128 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile |