A Large-Scale Foundation Model for RNA Enables Diverse Function and Structure Prediction Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.21203/rs.3.rs-6445344/v1
Accurately predicting RNA structures and functions from nucleotide sequences, or conversely, designing sequences to meet structural and functional requirements, remains a fundamental challenge in RNA biology, largely due to limited annotated data and the poor efficiency of \textit{ab initio} modeling approaches. Here, we introduce AIDO.RNA, a large-scale RNA foundation model that leverages self-supervised pre-training to learn general and effective RNA representations, which can be transferred to tackle a wide range of RNA prediction and design tasks. AIDO.RNA is a 1.6-billion-parameter transformer-based language model, pre-trained on 42 million non-coding RNA (ncRNA) sequences at single-nucleotide resolution. It can be adapted to achieve state-of-the-art performance on 26 out of 28 diverse tasks, including RNA structure and function prediction, mRNA expression modeling, multi-modal RNA isoform expression prediction, and RNA inverse folding, demonstrating its effectiveness and versatility across the board. We find that beyond excelling in ncRNA-related tasks that directly reside in the pre-training data space, AIDO.RNA can be efficiently adapted to new domains with continued domain-specific pre-training to generalize toward untranslated regions and coding regions of mRNA, suggesting a promising pathway to continue to level up biological foundation models in general. We make AIDO.RNA open source and release the utility of the model in AIDO.ModelGenerator, a Python package enabling easy reproduction, application, and extension of our results.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.21203/rs.3.rs-6445344/v1
- https://www.researchsquare.com/article/rs-6445344/latest.pdf
- OA Status
- gold
- Cited By
- 3
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4410165516
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4410165516Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.21203/rs.3.rs-6445344/v1Digital Object Identifier
- Title
-
A Large-Scale Foundation Model for RNA Enables Diverse Function and Structure PredictionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-05-07Full publication date if available
- Authors
-
Eric P. Xing, S. Zou, Tianhua Tao, Parvez Mahbub, Caleb N. Ellington, Robin Algayres, Dian Li, Yonghao Zhuang, Hongyi Wang, Le SongList of authors in order
- Landing page
-
https://doi.org/10.21203/rs.3.rs-6445344/v1Publisher landing page
- PDF URL
-
https://www.researchsquare.com/article/rs-6445344/latest.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.researchsquare.com/article/rs-6445344/latest.pdfDirect OA link when available
- Concepts
-
Foundation (evidence), Scale (ratio), Function (biology), Computer science, Computational biology, Biology, Evolutionary biology, Geography, Cartography, ArchaeologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4410165516 |
|---|---|
| doi | https://doi.org/10.21203/rs.3.rs-6445344/v1 |
| ids.doi | https://doi.org/10.21203/rs.3.rs-6445344/v1 |
| ids.openalex | https://openalex.org/W4410165516 |
| fwci | 8.04883388 |
| type | preprint |
| title | A Large-Scale Foundation Model for RNA Enables Diverse Function and Structure Prediction |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10521 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.9983000159263611 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1312 |
| topics[0].subfield.display_name | Molecular Biology |
| topics[0].display_name | RNA and protein synthesis mechanisms |
| topics[1].id | https://openalex.org/T11482 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9645000100135803 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1312 |
| topics[1].subfield.display_name | Molecular Biology |
| topics[1].display_name | RNA modifications and cancer |
| topics[2].id | https://openalex.org/T10604 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9521999955177307 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1312 |
| topics[2].subfield.display_name | Molecular Biology |
| topics[2].display_name | RNA Research and Splicing |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2780966255 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6469565629959106 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5474306 |
| concepts[0].display_name | Foundation (evidence) |
| concepts[1].id | https://openalex.org/C2778755073 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5734413862228394 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q10858537 |
| concepts[1].display_name | Scale (ratio) |
| concepts[2].id | https://openalex.org/C14036430 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5246082544326782 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3736076 |
| concepts[2].display_name | Function (biology) |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.4385327696800232 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C70721500 |
| concepts[4].level | 1 |
| concepts[4].score | 0.43343549966812134 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q177005 |
| concepts[4].display_name | Computational biology |
| concepts[5].id | https://openalex.org/C86803240 |
| concepts[5].level | 0 |
| concepts[5].score | 0.2255222201347351 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[5].display_name | Biology |
| concepts[6].id | https://openalex.org/C78458016 |
| concepts[6].level | 1 |
| concepts[6].score | 0.12684029340744019 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q840400 |
| concepts[6].display_name | Evolutionary biology |
| concepts[7].id | https://openalex.org/C205649164 |
| concepts[7].level | 0 |
| concepts[7].score | 0.1158435046672821 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[7].display_name | Geography |
| concepts[8].id | https://openalex.org/C58640448 |
| concepts[8].level | 1 |
| concepts[8].score | 0.09123358130455017 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q42515 |
| concepts[8].display_name | Cartography |
| concepts[9].id | https://openalex.org/C166957645 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[9].display_name | Archaeology |
| keywords[0].id | https://openalex.org/keywords/foundation |
| keywords[0].score | 0.6469565629959106 |
| keywords[0].display_name | Foundation (evidence) |
| keywords[1].id | https://openalex.org/keywords/scale |
| keywords[1].score | 0.5734413862228394 |
| keywords[1].display_name | Scale (ratio) |
| keywords[2].id | https://openalex.org/keywords/function |
| keywords[2].score | 0.5246082544326782 |
| keywords[2].display_name | Function (biology) |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.4385327696800232 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/computational-biology |
| keywords[4].score | 0.43343549966812134 |
| keywords[4].display_name | Computational biology |
| keywords[5].id | https://openalex.org/keywords/biology |
| keywords[5].score | 0.2255222201347351 |
| keywords[5].display_name | Biology |
| keywords[6].id | https://openalex.org/keywords/evolutionary-biology |
| keywords[6].score | 0.12684029340744019 |
| keywords[6].display_name | Evolutionary biology |
| keywords[7].id | https://openalex.org/keywords/geography |
| keywords[7].score | 0.1158435046672821 |
| keywords[7].display_name | Geography |
| keywords[8].id | https://openalex.org/keywords/cartography |
| keywords[8].score | 0.09123358130455017 |
| keywords[8].display_name | Cartography |
| language | en |
| locations[0].id | doi:10.21203/rs.3.rs-6445344/v1 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.researchsquare.com/article/rs-6445344/latest.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.21203/rs.3.rs-6445344/v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5009547049 |
| authorships[0].author.orcid | https://orcid.org/0009-0005-9158-4201 |
| authorships[0].author.display_name | Eric P. Xing |
| authorships[0].countries | AE, US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210113480, https://openalex.org/I74973139 |
| authorships[0].affiliations[0].raw_affiliation_string | GenBio AI; Mohamed bin Zayed University of Artificial Intelligence; Carnegie Mellon University |
| authorships[0].institutions[0].id | https://openalex.org/I4210113480 |
| authorships[0].institutions[0].ror | https://ror.org/0258gkt32 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210113480 |
| authorships[0].institutions[0].country_code | AE |
| authorships[0].institutions[0].display_name | Mohamed bin Zayed University of Artificial Intelligence |
| authorships[0].institutions[1].id | https://openalex.org/I74973139 |
| authorships[0].institutions[1].ror | https://ror.org/05x2bcf33 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I74973139 |
| authorships[0].institutions[1].country_code | US |
| authorships[0].institutions[1].display_name | Carnegie Mellon University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Eric Xing |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | GenBio AI; Mohamed bin Zayed University of Artificial Intelligence; Carnegie Mellon University |
| authorships[1].author.id | https://openalex.org/A5110727285 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | S. Zou |
| authorships[1].countries | AE |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210113480 |
| authorships[1].affiliations[0].raw_affiliation_string | GenBio AI; Mohamed bin Zayed University of Artificial Intelligence |
| authorships[1].institutions[0].id | https://openalex.org/I4210113480 |
| authorships[1].institutions[0].ror | https://ror.org/0258gkt32 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210113480 |
| authorships[1].institutions[0].country_code | AE |
| authorships[1].institutions[0].display_name | Mohamed bin Zayed University of Artificial Intelligence |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Shuxian Zou |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | GenBio AI; Mohamed bin Zayed University of Artificial Intelligence |
| authorships[2].author.id | https://openalex.org/A5081822522 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Tianhua Tao |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I201448701 |
| authorships[2].affiliations[0].raw_affiliation_string | GenBio AI; University of Washington |
| authorships[2].institutions[0].id | https://openalex.org/I201448701 |
| authorships[2].institutions[0].ror | https://ror.org/00cvxb145 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I201448701 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | University of Washington |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Tianhua Tao |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | GenBio AI; University of Washington |
| authorships[3].author.id | https://openalex.org/A5022301955 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-9164-5204 |
| authorships[3].author.display_name | Parvez Mahbub |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I74973139 |
| authorships[3].affiliations[0].raw_affiliation_string | GenBio AI; Carnegie Mellon University |
| authorships[3].institutions[0].id | https://openalex.org/I74973139 |
| authorships[3].institutions[0].ror | https://ror.org/05x2bcf33 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I74973139 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Carnegie Mellon University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Sazan Mahbub |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | GenBio AI; Carnegie Mellon University |
| authorships[4].author.id | https://openalex.org/A5047695651 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-7029-8023 |
| authorships[4].author.display_name | Caleb N. Ellington |
| authorships[4].affiliations[0].raw_affiliation_string | GenBio AI |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Caleb Ellington |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | GenBio AI |
| authorships[5].author.id | https://openalex.org/A5114879276 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Robin Algayres |
| authorships[5].affiliations[0].raw_affiliation_string | GenBio AI |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Robin Algayres |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | GenBio AI |
| authorships[6].author.id | https://openalex.org/A5100675443 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-9968-1907 |
| authorships[6].author.display_name | Dian Li |
| authorships[6].affiliations[0].raw_affiliation_string | GenBio AI |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Dian Li |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | GenBio AI |
| authorships[7].author.id | https://openalex.org/A5076407338 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Yonghao Zhuang |
| authorships[7].countries | US |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I74973139 |
| authorships[7].affiliations[0].raw_affiliation_string | GenBio AI; Carnegie Mellon University |
| authorships[7].institutions[0].id | https://openalex.org/I74973139 |
| authorships[7].institutions[0].ror | https://ror.org/05x2bcf33 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I74973139 |
| authorships[7].institutions[0].country_code | US |
| authorships[7].institutions[0].display_name | Carnegie Mellon University |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Yonghao Zhuang |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | GenBio AI; Carnegie Mellon University |
| authorships[8].author.id | https://openalex.org/A5100701041 |
| authorships[8].author.orcid | https://orcid.org/0009-0006-0034-0074 |
| authorships[8].author.display_name | Hongyi Wang |
| authorships[8].affiliations[0].raw_affiliation_string | GenBio AI |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Hongyi Wang |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | GenBio AI |
| authorships[9].author.id | https://openalex.org/A5101589053 |
| authorships[9].author.orcid | https://orcid.org/0000-0001-6261-6570 |
| authorships[9].author.display_name | Le Song |
| authorships[9].countries | AE |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I4210113480 |
| authorships[9].affiliations[0].raw_affiliation_string | GenBio AI; Mohamed bin Zayed University of Artificial Intelligence |
| authorships[9].institutions[0].id | https://openalex.org/I4210113480 |
| authorships[9].institutions[0].ror | https://ror.org/0258gkt32 |
| authorships[9].institutions[0].type | education |
| authorships[9].institutions[0].lineage | https://openalex.org/I4210113480 |
| authorships[9].institutions[0].country_code | AE |
| authorships[9].institutions[0].display_name | Mohamed bin Zayed University of Artificial Intelligence |
| authorships[9].author_position | last |
| authorships[9].raw_author_name | Le Song |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | GenBio AI; Mohamed bin Zayed University of Artificial Intelligence |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.researchsquare.com/article/rs-6445344/latest.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Large-Scale Foundation Model for RNA Enables Diverse Function and Structure Prediction |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10521 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.9983000159263611 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1312 |
| primary_topic.subfield.display_name | Molecular Biology |
| primary_topic.display_name | RNA and protein synthesis mechanisms |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2381393187, https://openalex.org/W2332779545, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W2358060160, https://openalex.org/W2035483685 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| locations_count | 1 |
| best_oa_location.id | doi:10.21203/rs.3.rs-6445344/v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.researchsquare.com/article/rs-6445344/latest.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-6445344/v1 |
| primary_location.id | doi:10.21203/rs.3.rs-6445344/v1 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.researchsquare.com/article/rs-6445344/latest.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-6445344/v1 |
| publication_date | 2025-05-07 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 21, 46, 68, 79, 175, 202 |
| abstract_inverted_index.26 | 104 |
| abstract_inverted_index.28 | 107 |
| abstract_inverted_index.42 | 86 |
| abstract_inverted_index.It | 95 |
| abstract_inverted_index.We | 136, 188 |
| abstract_inverted_index.at | 92 |
| abstract_inverted_index.be | 64, 97, 154 |
| abstract_inverted_index.in | 24, 141, 147, 186, 200 |
| abstract_inverted_index.is | 78 |
| abstract_inverted_index.of | 37, 71, 106, 172, 197, 211 |
| abstract_inverted_index.on | 85, 103 |
| abstract_inverted_index.or | 10 |
| abstract_inverted_index.to | 14, 29, 55, 66, 99, 157, 164, 178, 180 |
| abstract_inverted_index.up | 182 |
| abstract_inverted_index.we | 43 |
| abstract_inverted_index.RNA | 3, 25, 48, 60, 72, 89, 111, 120, 125 |
| abstract_inverted_index.and | 5, 17, 33, 58, 74, 113, 124, 131, 169, 193, 209 |
| abstract_inverted_index.can | 63, 96, 153 |
| abstract_inverted_index.due | 28 |
| abstract_inverted_index.its | 129 |
| abstract_inverted_index.new | 158 |
| abstract_inverted_index.our | 212 |
| abstract_inverted_index.out | 105 |
| abstract_inverted_index.the | 34, 134, 148, 195, 198 |
| abstract_inverted_index.data | 32, 150 |
| abstract_inverted_index.easy | 206 |
| abstract_inverted_index.find | 137 |
| abstract_inverted_index.from | 7 |
| abstract_inverted_index.mRNA | 116 |
| abstract_inverted_index.make | 189 |
| abstract_inverted_index.meet | 15 |
| abstract_inverted_index.open | 191 |
| abstract_inverted_index.poor | 35 |
| abstract_inverted_index.that | 51, 138, 144 |
| abstract_inverted_index.wide | 69 |
| abstract_inverted_index.with | 160 |
| abstract_inverted_index.Here, | 42 |
| abstract_inverted_index.learn | 56 |
| abstract_inverted_index.level | 181 |
| abstract_inverted_index.mRNA, | 173 |
| abstract_inverted_index.model | 50, 199 |
| abstract_inverted_index.range | 70 |
| abstract_inverted_index.tasks | 143 |
| abstract_inverted_index.which | 62 |
| abstract_inverted_index.Python | 203 |
| abstract_inverted_index.across | 133 |
| abstract_inverted_index.beyond | 139 |
| abstract_inverted_index.board. | 135 |
| abstract_inverted_index.coding | 170 |
| abstract_inverted_index.design | 75 |
| abstract_inverted_index.model, | 83 |
| abstract_inverted_index.models | 185 |
| abstract_inverted_index.reside | 146 |
| abstract_inverted_index.source | 192 |
| abstract_inverted_index.space, | 151 |
| abstract_inverted_index.tackle | 67 |
| abstract_inverted_index.tasks, | 109 |
| abstract_inverted_index.tasks. | 76 |
| abstract_inverted_index.toward | 166 |
| abstract_inverted_index.(ncRNA) | 90 |
| abstract_inverted_index.achieve | 100 |
| abstract_inverted_index.adapted | 98, 156 |
| abstract_inverted_index.diverse | 108 |
| abstract_inverted_index.domains | 159 |
| abstract_inverted_index.general | 57 |
| abstract_inverted_index.initio} | 39 |
| abstract_inverted_index.inverse | 126 |
| abstract_inverted_index.isoform | 121 |
| abstract_inverted_index.largely | 27 |
| abstract_inverted_index.limited | 30 |
| abstract_inverted_index.million | 87 |
| abstract_inverted_index.package | 204 |
| abstract_inverted_index.pathway | 177 |
| abstract_inverted_index.regions | 168, 171 |
| abstract_inverted_index.release | 194 |
| abstract_inverted_index.remains | 20 |
| abstract_inverted_index.utility | 196 |
| abstract_inverted_index.AIDO.RNA | 77, 152, 190 |
| abstract_inverted_index.biology, | 26 |
| abstract_inverted_index.continue | 179 |
| abstract_inverted_index.directly | 145 |
| abstract_inverted_index.enabling | 205 |
| abstract_inverted_index.folding, | 127 |
| abstract_inverted_index.function | 114 |
| abstract_inverted_index.general. | 187 |
| abstract_inverted_index.language | 82 |
| abstract_inverted_index.modeling | 40 |
| abstract_inverted_index.results. | 213 |
| abstract_inverted_index.AIDO.RNA, | 45 |
| abstract_inverted_index.annotated | 31 |
| abstract_inverted_index.challenge | 23 |
| abstract_inverted_index.continued | 161 |
| abstract_inverted_index.designing | 12 |
| abstract_inverted_index.effective | 59 |
| abstract_inverted_index.excelling | 140 |
| abstract_inverted_index.extension | 210 |
| abstract_inverted_index.functions | 6 |
| abstract_inverted_index.including | 110 |
| abstract_inverted_index.introduce | 44 |
| abstract_inverted_index.leverages | 52 |
| abstract_inverted_index.modeling, | 118 |
| abstract_inverted_index.promising | 176 |
| abstract_inverted_index.sequences | 13, 91 |
| abstract_inverted_index.structure | 112 |
| abstract_inverted_index.Accurately | 1 |
| abstract_inverted_index.\textit{ab | 38 |
| abstract_inverted_index.biological | 183 |
| abstract_inverted_index.efficiency | 36 |
| abstract_inverted_index.expression | 117, 122 |
| abstract_inverted_index.foundation | 49, 184 |
| abstract_inverted_index.functional | 18 |
| abstract_inverted_index.generalize | 165 |
| abstract_inverted_index.non-coding | 88 |
| abstract_inverted_index.nucleotide | 8 |
| abstract_inverted_index.predicting | 2 |
| abstract_inverted_index.prediction | 73 |
| abstract_inverted_index.sequences, | 9 |
| abstract_inverted_index.structural | 16 |
| abstract_inverted_index.structures | 4 |
| abstract_inverted_index.suggesting | 174 |
| abstract_inverted_index.approaches. | 41 |
| abstract_inverted_index.conversely, | 11 |
| abstract_inverted_index.efficiently | 155 |
| abstract_inverted_index.fundamental | 22 |
| abstract_inverted_index.large-scale | 47 |
| abstract_inverted_index.multi-modal | 119 |
| abstract_inverted_index.performance | 102 |
| abstract_inverted_index.pre-trained | 84 |
| abstract_inverted_index.prediction, | 115, 123 |
| abstract_inverted_index.resolution. | 94 |
| abstract_inverted_index.transferred | 65 |
| abstract_inverted_index.versatility | 132 |
| abstract_inverted_index.application, | 208 |
| abstract_inverted_index.pre-training | 54, 149, 163 |
| abstract_inverted_index.untranslated | 167 |
| abstract_inverted_index.demonstrating | 128 |
| abstract_inverted_index.effectiveness | 130 |
| abstract_inverted_index.ncRNA-related | 142 |
| abstract_inverted_index.reproduction, | 207 |
| abstract_inverted_index.requirements, | 19 |
| abstract_inverted_index.domain-specific | 162 |
| abstract_inverted_index.self-supervised | 53 |
| abstract_inverted_index.representations, | 61 |
| abstract_inverted_index.state-of-the-art | 101 |
| abstract_inverted_index.single-nucleotide | 93 |
| abstract_inverted_index.transformer-based | 81 |
| abstract_inverted_index.AIDO.ModelGenerator, | 201 |
| abstract_inverted_index.1.6-billion-parameter | 80 |
| abstract_inverted_index.<title>Abstract</title> | 0 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 96 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 10 |
| citation_normalized_percentile.value | 0.93681399 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |