A Latent Implicit 3D Shape Model for Multiple Levels of Detail Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2409.06231
Implicit neural representations map a shape-specific latent code and a 3D coordinate to its corresponding signed distance (SDF) value. However, this approach only offers a single level of detail. Emulating low levels of detail can be achieved with shallow networks, but the generated shapes are typically not smooth. Alternatively, some network designs offer multiple levels of detail, but are limited to overfitting a single object. To address this, we propose a new shape modeling approach, which enables multiple levels of detail and guarantees a smooth surface at each level. At the core, we introduce a novel latent conditioning for a multiscale and bandwith-limited neural architecture. This results in a deep parameterization of multiple shapes, where early layers quickly output approximated SDF values. This allows to balance speed and accuracy within a single network and enhance the efficiency of implicit scene rendering. We demonstrate that by limiting the bandwidth of the network, we can maintain smooth surfaces across all levels of detail. At finer levels, reconstruction quality is on par with the state of the art models, which are limited to a single level of detail.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2409.06231
- https://arxiv.org/pdf/2409.06231
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403593297
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403593297Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2409.06231Digital Object Identifier
- Title
-
A Latent Implicit 3D Shape Model for Multiple Levels of DetailWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-09-10Full publication date if available
- Authors
-
Benoit Guillard, Marc Habermann, Christian Theobalt, Pascal FuaList of authors in order
- Landing page
-
https://arxiv.org/abs/2409.06231Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2409.06231Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2409.06231Direct OA link when available
- Concepts
-
Computer science, Econometrics, MathematicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403593297 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2409.06231 |
| ids.doi | https://doi.org/10.48550/arxiv.2409.06231 |
| ids.openalex | https://openalex.org/W4403593297 |
| fwci | |
| type | preprint |
| title | A Latent Implicit 3D Shape Model for Multiple Levels of Detail |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10719 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9908000230789185 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2206 |
| topics[0].subfield.display_name | Computational Mechanics |
| topics[0].display_name | 3D Shape Modeling and Analysis |
| topics[1].id | https://openalex.org/T11211 |
| topics[1].field.id | https://openalex.org/fields/19 |
| topics[1].field.display_name | Earth and Planetary Sciences |
| topics[1].score | 0.9506999850273132 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1907 |
| topics[1].subfield.display_name | Geology |
| topics[1].display_name | 3D Surveying and Cultural Heritage |
| topics[2].id | https://openalex.org/T10481 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9430999755859375 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1704 |
| topics[2].subfield.display_name | Computer Graphics and Computer-Aided Design |
| topics[2].display_name | Computer Graphics and Visualization Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.42614316940307617 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C149782125 |
| concepts[1].level | 1 |
| concepts[1].score | 0.42272526025772095 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[1].display_name | Econometrics |
| concepts[2].id | https://openalex.org/C33923547 |
| concepts[2].level | 0 |
| concepts[2].score | 0.26860201358795166 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[2].display_name | Mathematics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.42614316940307617 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/econometrics |
| keywords[1].score | 0.42272526025772095 |
| keywords[1].display_name | Econometrics |
| keywords[2].id | https://openalex.org/keywords/mathematics |
| keywords[2].score | 0.26860201358795166 |
| keywords[2].display_name | Mathematics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2409.06231 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2409.06231 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2409.06231 |
| locations[1].id | doi:10.48550/arxiv.2409.06231 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2409.06231 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5114343405 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Benoit Guillard |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Guillard, Benoit |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5056083424 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3899-7515 |
| authorships[1].author.display_name | Marc Habermann |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Habermann, Marc |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5020664641 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6104-6625 |
| authorships[2].author.display_name | Christian Theobalt |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Theobalt, Christian |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5038674741 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6702-9970 |
| authorships[3].author.display_name | Pascal Fua |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Fua, Pascal |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2409.06231 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Latent Implicit 3D Shape Model for Multiple Levels of Detail |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10719 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9908000230789185 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2206 |
| primary_topic.subfield.display_name | Computational Mechanics |
| primary_topic.display_name | 3D Shape Modeling and Analysis |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2409.06231 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2409.06231 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2409.06231 |
| primary_location.id | pmh:oai:arXiv.org:2409.06231 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2409.06231 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2409.06231 |
| publication_date | 2024-09-10 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 4, 9, 24, 62, 70, 83, 94, 99, 108, 130, 180 |
| abstract_inverted_index.3D | 10 |
| abstract_inverted_index.At | 89, 161 |
| abstract_inverted_index.To | 65 |
| abstract_inverted_index.We | 141 |
| abstract_inverted_index.at | 86 |
| abstract_inverted_index.be | 35 |
| abstract_inverted_index.by | 144 |
| abstract_inverted_index.in | 107 |
| abstract_inverted_index.is | 166 |
| abstract_inverted_index.of | 27, 32, 55, 79, 111, 137, 148, 159, 172, 183 |
| abstract_inverted_index.on | 167 |
| abstract_inverted_index.to | 12, 60, 124, 179 |
| abstract_inverted_index.we | 68, 92, 151 |
| abstract_inverted_index.SDF | 120 |
| abstract_inverted_index.all | 157 |
| abstract_inverted_index.and | 8, 81, 101, 127, 133 |
| abstract_inverted_index.are | 44, 58, 177 |
| abstract_inverted_index.art | 174 |
| abstract_inverted_index.but | 40, 57 |
| abstract_inverted_index.can | 34, 152 |
| abstract_inverted_index.for | 98 |
| abstract_inverted_index.its | 13 |
| abstract_inverted_index.low | 30 |
| abstract_inverted_index.map | 3 |
| abstract_inverted_index.new | 71 |
| abstract_inverted_index.not | 46 |
| abstract_inverted_index.par | 168 |
| abstract_inverted_index.the | 41, 90, 135, 146, 149, 170, 173 |
| abstract_inverted_index.This | 105, 122 |
| abstract_inverted_index.code | 7 |
| abstract_inverted_index.deep | 109 |
| abstract_inverted_index.each | 87 |
| abstract_inverted_index.only | 22 |
| abstract_inverted_index.some | 49 |
| abstract_inverted_index.that | 143 |
| abstract_inverted_index.this | 20 |
| abstract_inverted_index.with | 37, 169 |
| abstract_inverted_index.(SDF) | 17 |
| abstract_inverted_index.core, | 91 |
| abstract_inverted_index.early | 115 |
| abstract_inverted_index.finer | 162 |
| abstract_inverted_index.level | 26, 182 |
| abstract_inverted_index.novel | 95 |
| abstract_inverted_index.offer | 52 |
| abstract_inverted_index.scene | 139 |
| abstract_inverted_index.shape | 72 |
| abstract_inverted_index.speed | 126 |
| abstract_inverted_index.state | 171 |
| abstract_inverted_index.this, | 67 |
| abstract_inverted_index.where | 114 |
| abstract_inverted_index.which | 75, 176 |
| abstract_inverted_index.across | 156 |
| abstract_inverted_index.allows | 123 |
| abstract_inverted_index.detail | 33, 80 |
| abstract_inverted_index.latent | 6, 96 |
| abstract_inverted_index.layers | 116 |
| abstract_inverted_index.level. | 88 |
| abstract_inverted_index.levels | 31, 54, 78, 158 |
| abstract_inverted_index.neural | 1, 103 |
| abstract_inverted_index.offers | 23 |
| abstract_inverted_index.output | 118 |
| abstract_inverted_index.shapes | 43 |
| abstract_inverted_index.signed | 15 |
| abstract_inverted_index.single | 25, 63, 131, 181 |
| abstract_inverted_index.smooth | 84, 154 |
| abstract_inverted_index.value. | 18 |
| abstract_inverted_index.within | 129 |
| abstract_inverted_index.address | 66 |
| abstract_inverted_index.balance | 125 |
| abstract_inverted_index.designs | 51 |
| abstract_inverted_index.detail, | 56 |
| abstract_inverted_index.detail. | 28, 160, 184 |
| abstract_inverted_index.enables | 76 |
| abstract_inverted_index.enhance | 134 |
| abstract_inverted_index.levels, | 163 |
| abstract_inverted_index.limited | 59, 178 |
| abstract_inverted_index.models, | 175 |
| abstract_inverted_index.network | 50, 132 |
| abstract_inverted_index.object. | 64 |
| abstract_inverted_index.propose | 69 |
| abstract_inverted_index.quality | 165 |
| abstract_inverted_index.quickly | 117 |
| abstract_inverted_index.results | 106 |
| abstract_inverted_index.shallow | 38 |
| abstract_inverted_index.shapes, | 113 |
| abstract_inverted_index.smooth. | 47 |
| abstract_inverted_index.surface | 85 |
| abstract_inverted_index.values. | 121 |
| abstract_inverted_index.However, | 19 |
| abstract_inverted_index.Implicit | 0 |
| abstract_inverted_index.accuracy | 128 |
| abstract_inverted_index.achieved | 36 |
| abstract_inverted_index.approach | 21 |
| abstract_inverted_index.distance | 16 |
| abstract_inverted_index.implicit | 138 |
| abstract_inverted_index.limiting | 145 |
| abstract_inverted_index.maintain | 153 |
| abstract_inverted_index.modeling | 73 |
| abstract_inverted_index.multiple | 53, 77, 112 |
| abstract_inverted_index.network, | 150 |
| abstract_inverted_index.surfaces | 155 |
| abstract_inverted_index.Emulating | 29 |
| abstract_inverted_index.approach, | 74 |
| abstract_inverted_index.bandwidth | 147 |
| abstract_inverted_index.generated | 42 |
| abstract_inverted_index.introduce | 93 |
| abstract_inverted_index.networks, | 39 |
| abstract_inverted_index.typically | 45 |
| abstract_inverted_index.coordinate | 11 |
| abstract_inverted_index.efficiency | 136 |
| abstract_inverted_index.guarantees | 82 |
| abstract_inverted_index.multiscale | 100 |
| abstract_inverted_index.rendering. | 140 |
| abstract_inverted_index.demonstrate | 142 |
| abstract_inverted_index.overfitting | 61 |
| abstract_inverted_index.approximated | 119 |
| abstract_inverted_index.conditioning | 97 |
| abstract_inverted_index.architecture. | 104 |
| abstract_inverted_index.corresponding | 14 |
| abstract_inverted_index.Alternatively, | 48 |
| abstract_inverted_index.reconstruction | 164 |
| abstract_inverted_index.shape-specific | 5 |
| abstract_inverted_index.representations | 2 |
| abstract_inverted_index.bandwith-limited | 102 |
| abstract_inverted_index.parameterization | 110 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |