A Latent Variable Approach for Non-Hierarchical Multi-Fidelity Adaptive Sampling Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2310.03298
Multi-fidelity (MF) methods are gaining popularity for enhancing surrogate modeling and design optimization by incorporating data from various low-fidelity (LF) models. While most existing MF methods assume a fixed dataset, adaptive sampling methods that dynamically allocate resources among fidelity models can achieve higher efficiency in the exploring and exploiting the design space. However, most existing MF methods rely on the hierarchical assumption of fidelity levels or fail to capture the intercorrelation between multiple fidelity levels and utilize it to quantify the value of the future samples and navigate the adaptive sampling. To address this hurdle, we propose a framework hinged on a latent embedding for different fidelity models and the associated pre-posterior analysis to explicitly utilize their correlation for adaptive sampling. In this framework, each infill sampling iteration includes two steps: We first identify the location of interest with the greatest potential improvement using the high-fidelity (HF) model, then we search for the next sample across all fidelity levels that maximize the improvement per unit cost at the location identified in the first step. This is made possible by a single Latent Variable Gaussian Process (LVGP) model that maps different fidelity models into an interpretable latent space to capture their correlations without assuming hierarchical fidelity levels. The LVGP enables us to assess how LF sampling candidates will affect HF response with pre-posterior analysis and determine the next sample with the best benefit-to-cost ratio. Through test cases, we demonstrate that the proposed method outperforms the benchmark methods in both MF global fitting (GF) and Bayesian Optimization (BO) problems in convergence rate and robustness. Moreover, the method offers the flexibility to switch between GF and BO by simply changing the acquisition function.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2310.03298
- https://arxiv.org/pdf/2310.03298
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4387432159
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4387432159Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2310.03298Digital Object Identifier
- Title
-
A Latent Variable Approach for Non-Hierarchical Multi-Fidelity Adaptive SamplingWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-10-05Full publication date if available
- Authors
-
Yi‐Ping Phoebe Chen, Liwei Wang, Yigitcan Comlek, Wei ChenList of authors in order
- Landing page
-
https://arxiv.org/abs/2310.03298Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2310.03298Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2310.03298Direct OA link when available
- Concepts
-
Fidelity, Computer science, Sampling (signal processing), Benchmark (surveying), Adaptive sampling, Variable (mathematics), Sample (material), Latent variable, Machine learning, Data mining, Artificial intelligence, Statistics, Mathematics, Mathematical analysis, Chemistry, Telecommunications, Filter (signal processing), Chromatography, Monte Carlo method, Geography, Geodesy, Computer visionTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4387432159 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2310.03298 |
| ids.doi | https://doi.org/10.48550/arxiv.2310.03298 |
| ids.openalex | https://openalex.org/W4387432159 |
| fwci | 0.0 |
| type | preprint |
| title | A Latent Variable Approach for Non-Hierarchical Multi-Fidelity Adaptive Sampling |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10848 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9962000250816345 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1703 |
| topics[0].subfield.display_name | Computational Theory and Mathematics |
| topics[0].display_name | Advanced Multi-Objective Optimization Algorithms |
| topics[1].id | https://openalex.org/T11606 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9577000141143799 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2205 |
| topics[1].subfield.display_name | Civil and Structural Engineering |
| topics[1].display_name | Infrastructure Maintenance and Monitoring |
| topics[2].id | https://openalex.org/T11798 |
| topics[2].field.id | https://openalex.org/fields/18 |
| topics[2].field.display_name | Decision Sciences |
| topics[2].score | 0.9480000138282776 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1803 |
| topics[2].subfield.display_name | Management Science and Operations Research |
| topics[2].display_name | Optimal Experimental Design Methods |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2776459999 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7289900779724121 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2119376 |
| concepts[0].display_name | Fidelity |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6819261908531189 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C140779682 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5855807662010193 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q210868 |
| concepts[2].display_name | Sampling (signal processing) |
| concepts[3].id | https://openalex.org/C185798385 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5408049821853638 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[3].display_name | Benchmark (surveying) |
| concepts[4].id | https://openalex.org/C2781395549 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5197881460189819 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q4680762 |
| concepts[4].display_name | Adaptive sampling |
| concepts[5].id | https://openalex.org/C182365436 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4585625231266022 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q50701 |
| concepts[5].display_name | Variable (mathematics) |
| concepts[6].id | https://openalex.org/C198531522 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4315856099128723 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q485146 |
| concepts[6].display_name | Sample (material) |
| concepts[7].id | https://openalex.org/C51167844 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4161826968193054 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q4422623 |
| concepts[7].display_name | Latent variable |
| concepts[8].id | https://openalex.org/C119857082 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3793867230415344 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[8].display_name | Machine learning |
| concepts[9].id | https://openalex.org/C124101348 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3473980724811554 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[9].display_name | Data mining |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3439252972602844 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| concepts[11].id | https://openalex.org/C105795698 |
| concepts[11].level | 1 |
| concepts[11].score | 0.2242390513420105 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[11].display_name | Statistics |
| concepts[12].id | https://openalex.org/C33923547 |
| concepts[12].level | 0 |
| concepts[12].score | 0.18123561143875122 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[12].display_name | Mathematics |
| concepts[13].id | https://openalex.org/C134306372 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[13].display_name | Mathematical analysis |
| concepts[14].id | https://openalex.org/C185592680 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[14].display_name | Chemistry |
| concepts[15].id | https://openalex.org/C76155785 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[15].display_name | Telecommunications |
| concepts[16].id | https://openalex.org/C106131492 |
| concepts[16].level | 2 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q3072260 |
| concepts[16].display_name | Filter (signal processing) |
| concepts[17].id | https://openalex.org/C43617362 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q170050 |
| concepts[17].display_name | Chromatography |
| concepts[18].id | https://openalex.org/C19499675 |
| concepts[18].level | 2 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q232207 |
| concepts[18].display_name | Monte Carlo method |
| concepts[19].id | https://openalex.org/C205649164 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[19].display_name | Geography |
| concepts[20].id | https://openalex.org/C13280743 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[20].display_name | Geodesy |
| concepts[21].id | https://openalex.org/C31972630 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[21].display_name | Computer vision |
| keywords[0].id | https://openalex.org/keywords/fidelity |
| keywords[0].score | 0.7289900779724121 |
| keywords[0].display_name | Fidelity |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6819261908531189 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/sampling |
| keywords[2].score | 0.5855807662010193 |
| keywords[2].display_name | Sampling (signal processing) |
| keywords[3].id | https://openalex.org/keywords/benchmark |
| keywords[3].score | 0.5408049821853638 |
| keywords[3].display_name | Benchmark (surveying) |
| keywords[4].id | https://openalex.org/keywords/adaptive-sampling |
| keywords[4].score | 0.5197881460189819 |
| keywords[4].display_name | Adaptive sampling |
| keywords[5].id | https://openalex.org/keywords/variable |
| keywords[5].score | 0.4585625231266022 |
| keywords[5].display_name | Variable (mathematics) |
| keywords[6].id | https://openalex.org/keywords/sample |
| keywords[6].score | 0.4315856099128723 |
| keywords[6].display_name | Sample (material) |
| keywords[7].id | https://openalex.org/keywords/latent-variable |
| keywords[7].score | 0.4161826968193054 |
| keywords[7].display_name | Latent variable |
| keywords[8].id | https://openalex.org/keywords/machine-learning |
| keywords[8].score | 0.3793867230415344 |
| keywords[8].display_name | Machine learning |
| keywords[9].id | https://openalex.org/keywords/data-mining |
| keywords[9].score | 0.3473980724811554 |
| keywords[9].display_name | Data mining |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.3439252972602844 |
| keywords[10].display_name | Artificial intelligence |
| keywords[11].id | https://openalex.org/keywords/statistics |
| keywords[11].score | 0.2242390513420105 |
| keywords[11].display_name | Statistics |
| keywords[12].id | https://openalex.org/keywords/mathematics |
| keywords[12].score | 0.18123561143875122 |
| keywords[12].display_name | Mathematics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2310.03298 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2310.03298 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2310.03298 |
| locations[1].id | doi:10.48550/arxiv.2310.03298 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article-journal |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2310.03298 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100728316 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4122-3767 |
| authorships[0].author.display_name | Yi‐Ping Phoebe Chen |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Chen, Yi-Ping |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100406711 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9970-8604 |
| authorships[1].author.display_name | Liwei Wang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Wang, Liwei |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5052256497 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3654-1576 |
| authorships[2].author.display_name | Yigitcan Comlek |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Comlek, Yigitcan |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100344439 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4653-7124 |
| authorships[3].author.display_name | Wei Chen |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Chen, Wei |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2310.03298 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Latent Variable Approach for Non-Hierarchical Multi-Fidelity Adaptive Sampling |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10848 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9962000250816345 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1703 |
| primary_topic.subfield.display_name | Computational Theory and Mathematics |
| primary_topic.display_name | Advanced Multi-Objective Optimization Algorithms |
| related_works | https://openalex.org/W2378211422, https://openalex.org/W2745001401, https://openalex.org/W4321353415, https://openalex.org/W2130974462, https://openalex.org/W2381850946, https://openalex.org/W4380449851, https://openalex.org/W2028665553, https://openalex.org/W2086519370, https://openalex.org/W972276598, https://openalex.org/W2087343574 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2310.03298 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2310.03298 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2310.03298 |
| primary_location.id | pmh:oai:arXiv.org:2310.03298 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2310.03298 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2310.03298 |
| publication_date | 2023-10-05 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 27, 97, 101, 179 |
| abstract_inverted_index.BO | 273 |
| abstract_inverted_index.GF | 271 |
| abstract_inverted_index.HF | 218 |
| abstract_inverted_index.In | 121 |
| abstract_inverted_index.LF | 213 |
| abstract_inverted_index.MF | 24, 55, 248 |
| abstract_inverted_index.To | 91 |
| abstract_inverted_index.We | 131 |
| abstract_inverted_index.an | 193 |
| abstract_inverted_index.at | 166 |
| abstract_inverted_index.by | 13, 178, 274 |
| abstract_inverted_index.in | 44, 170, 246, 257 |
| abstract_inverted_index.is | 175 |
| abstract_inverted_index.it | 77 |
| abstract_inverted_index.of | 62, 82, 136 |
| abstract_inverted_index.on | 58, 100 |
| abstract_inverted_index.or | 65 |
| abstract_inverted_index.to | 67, 78, 113, 197, 210, 268 |
| abstract_inverted_index.us | 209 |
| abstract_inverted_index.we | 95, 149, 236 |
| abstract_inverted_index.The | 206 |
| abstract_inverted_index.all | 156 |
| abstract_inverted_index.and | 10, 47, 75, 86, 108, 223, 252, 260, 272 |
| abstract_inverted_index.are | 3 |
| abstract_inverted_index.can | 40 |
| abstract_inverted_index.for | 6, 104, 118, 151 |
| abstract_inverted_index.how | 212 |
| abstract_inverted_index.per | 163 |
| abstract_inverted_index.the | 45, 49, 59, 69, 80, 83, 88, 109, 134, 139, 144, 152, 161, 167, 171, 225, 229, 239, 243, 263, 266, 277 |
| abstract_inverted_index.two | 129 |
| abstract_inverted_index.(BO) | 255 |
| abstract_inverted_index.(GF) | 251 |
| abstract_inverted_index.(HF) | 146 |
| abstract_inverted_index.(LF) | 19 |
| abstract_inverted_index.(MF) | 1 |
| abstract_inverted_index.LVGP | 207 |
| abstract_inverted_index.This | 174 |
| abstract_inverted_index.best | 230 |
| abstract_inverted_index.both | 247 |
| abstract_inverted_index.cost | 165 |
| abstract_inverted_index.data | 15 |
| abstract_inverted_index.each | 124 |
| abstract_inverted_index.fail | 66 |
| abstract_inverted_index.from | 16 |
| abstract_inverted_index.into | 192 |
| abstract_inverted_index.made | 176 |
| abstract_inverted_index.maps | 188 |
| abstract_inverted_index.most | 22, 53 |
| abstract_inverted_index.next | 153, 226 |
| abstract_inverted_index.rate | 259 |
| abstract_inverted_index.rely | 57 |
| abstract_inverted_index.test | 234 |
| abstract_inverted_index.that | 33, 159, 187, 238 |
| abstract_inverted_index.then | 148 |
| abstract_inverted_index.this | 93, 122 |
| abstract_inverted_index.unit | 164 |
| abstract_inverted_index.will | 216 |
| abstract_inverted_index.with | 138, 220, 228 |
| abstract_inverted_index.While | 21 |
| abstract_inverted_index.among | 37 |
| abstract_inverted_index.first | 132, 172 |
| abstract_inverted_index.fixed | 28 |
| abstract_inverted_index.model | 186 |
| abstract_inverted_index.space | 196 |
| abstract_inverted_index.step. | 173 |
| abstract_inverted_index.their | 116, 199 |
| abstract_inverted_index.using | 143 |
| abstract_inverted_index.value | 81 |
| abstract_inverted_index.(LVGP) | 185 |
| abstract_inverted_index.Latent | 181 |
| abstract_inverted_index.across | 155 |
| abstract_inverted_index.affect | 217 |
| abstract_inverted_index.assess | 211 |
| abstract_inverted_index.assume | 26 |
| abstract_inverted_index.cases, | 235 |
| abstract_inverted_index.design | 11, 50 |
| abstract_inverted_index.future | 84 |
| abstract_inverted_index.global | 249 |
| abstract_inverted_index.higher | 42 |
| abstract_inverted_index.hinged | 99 |
| abstract_inverted_index.infill | 125 |
| abstract_inverted_index.latent | 102, 195 |
| abstract_inverted_index.levels | 64, 74, 158 |
| abstract_inverted_index.method | 241, 264 |
| abstract_inverted_index.model, | 147 |
| abstract_inverted_index.models | 39, 107, 191 |
| abstract_inverted_index.offers | 265 |
| abstract_inverted_index.ratio. | 232 |
| abstract_inverted_index.sample | 154, 227 |
| abstract_inverted_index.search | 150 |
| abstract_inverted_index.simply | 275 |
| abstract_inverted_index.single | 180 |
| abstract_inverted_index.space. | 51 |
| abstract_inverted_index.steps: | 130 |
| abstract_inverted_index.switch | 269 |
| abstract_inverted_index.Process | 184 |
| abstract_inverted_index.Through | 233 |
| abstract_inverted_index.achieve | 41 |
| abstract_inverted_index.address | 92 |
| abstract_inverted_index.between | 71, 270 |
| abstract_inverted_index.capture | 68, 198 |
| abstract_inverted_index.enables | 208 |
| abstract_inverted_index.fitting | 250 |
| abstract_inverted_index.gaining | 4 |
| abstract_inverted_index.hurdle, | 94 |
| abstract_inverted_index.levels. | 205 |
| abstract_inverted_index.methods | 2, 25, 32, 56, 245 |
| abstract_inverted_index.models. | 20 |
| abstract_inverted_index.propose | 96 |
| abstract_inverted_index.samples | 85 |
| abstract_inverted_index.utilize | 76, 115 |
| abstract_inverted_index.various | 17 |
| abstract_inverted_index.without | 201 |
| abstract_inverted_index.Bayesian | 253 |
| abstract_inverted_index.Gaussian | 183 |
| abstract_inverted_index.However, | 52 |
| abstract_inverted_index.Variable | 182 |
| abstract_inverted_index.adaptive | 30, 89, 119 |
| abstract_inverted_index.allocate | 35 |
| abstract_inverted_index.analysis | 112, 222 |
| abstract_inverted_index.assuming | 202 |
| abstract_inverted_index.changing | 276 |
| abstract_inverted_index.dataset, | 29 |
| abstract_inverted_index.existing | 23, 54 |
| abstract_inverted_index.fidelity | 38, 63, 73, 106, 157, 190, 204 |
| abstract_inverted_index.greatest | 140 |
| abstract_inverted_index.identify | 133 |
| abstract_inverted_index.includes | 128 |
| abstract_inverted_index.interest | 137 |
| abstract_inverted_index.location | 135, 168 |
| abstract_inverted_index.maximize | 160 |
| abstract_inverted_index.modeling | 9 |
| abstract_inverted_index.multiple | 72 |
| abstract_inverted_index.navigate | 87 |
| abstract_inverted_index.possible | 177 |
| abstract_inverted_index.problems | 256 |
| abstract_inverted_index.proposed | 240 |
| abstract_inverted_index.quantify | 79 |
| abstract_inverted_index.response | 219 |
| abstract_inverted_index.sampling | 31, 126, 214 |
| abstract_inverted_index.Moreover, | 262 |
| abstract_inverted_index.benchmark | 244 |
| abstract_inverted_index.determine | 224 |
| abstract_inverted_index.different | 105, 189 |
| abstract_inverted_index.embedding | 103 |
| abstract_inverted_index.enhancing | 7 |
| abstract_inverted_index.exploring | 46 |
| abstract_inverted_index.framework | 98 |
| abstract_inverted_index.function. | 279 |
| abstract_inverted_index.iteration | 127 |
| abstract_inverted_index.potential | 141 |
| abstract_inverted_index.resources | 36 |
| abstract_inverted_index.sampling. | 90, 120 |
| abstract_inverted_index.surrogate | 8 |
| abstract_inverted_index.associated | 110 |
| abstract_inverted_index.assumption | 61 |
| abstract_inverted_index.candidates | 215 |
| abstract_inverted_index.efficiency | 43 |
| abstract_inverted_index.explicitly | 114 |
| abstract_inverted_index.exploiting | 48 |
| abstract_inverted_index.framework, | 123 |
| abstract_inverted_index.identified | 169 |
| abstract_inverted_index.popularity | 5 |
| abstract_inverted_index.acquisition | 278 |
| abstract_inverted_index.convergence | 258 |
| abstract_inverted_index.correlation | 117 |
| abstract_inverted_index.demonstrate | 237 |
| abstract_inverted_index.dynamically | 34 |
| abstract_inverted_index.flexibility | 267 |
| abstract_inverted_index.improvement | 142, 162 |
| abstract_inverted_index.outperforms | 242 |
| abstract_inverted_index.robustness. | 261 |
| abstract_inverted_index.Optimization | 254 |
| abstract_inverted_index.correlations | 200 |
| abstract_inverted_index.hierarchical | 60, 203 |
| abstract_inverted_index.low-fidelity | 18 |
| abstract_inverted_index.optimization | 12 |
| abstract_inverted_index.high-fidelity | 145 |
| abstract_inverted_index.incorporating | 14 |
| abstract_inverted_index.interpretable | 194 |
| abstract_inverted_index.pre-posterior | 111, 221 |
| abstract_inverted_index.Multi-fidelity | 0 |
| abstract_inverted_index.benefit-to-cost | 231 |
| abstract_inverted_index.intercorrelation | 70 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.23422971 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |