A Levenberg–Marquardt Backpropagation Neural Network for Predicting Forest Growing Stock Based on the Least-Squares Equation Fitting Parameters Article Swipe
YOU?
·
· 2018
· Open Access
·
· DOI: https://doi.org/10.3390/f9120757
Traditional field surveys are expensive, time-consuming, laborious, and difficult to perform, especially in mountainous and dense forests, which imposes a burden on forest management personnel and researchers. This study focuses on predicting forest growing stock, one of the most significant parameters of a forest resource assessment. First, three schemes were designed—Scheme 1, based on the study samples with mixed tree species; Scheme 2, based on the study samples divided into dominant tree species groups; and Scheme 3, based on the study samples divided by dominant tree species groups—the evaluation factors are fitted by least-squares equations, and the non-significant fitted-factors are removed. Second, an overall evaluation indicator system with 17 factors was established. Third, remote sensing images of Landsat Thematic Mapper, digital elevation model, and the inventory for forest management planning and design were integrated in the same database. Lastly, a backpropagation neural network based on the Levenberg–Marquardt algorithm was used to predict the forest growing stock. The results showed that the group estimation precision exceeded 90%, which is the highest standard of total sampling precision of inventory for forest management planning and design in China. The prediction results for distinguishing dominant tree species were better than for mixed dominant tree species. The results also showed that the performance metrics for prediction could be improved by least-squares equation fitting and significance filtering of the evaluation factors.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/f9120757
- https://www.mdpi.com/1999-4907/9/12/757/pdf
- OA Status
- gold
- Cited By
- 35
- References
- 40
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2902799593
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2902799593Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/f9120757Digital Object Identifier
- Title
-
A Levenberg–Marquardt Backpropagation Neural Network for Predicting Forest Growing Stock Based on the Least-Squares Equation Fitting ParametersWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2018Year of publication
- Publication date
-
2018-12-05Full publication date if available
- Authors
-
Ruyi Zhou, Dasheng Wu, Luming Fang, Aijun Xu, Xiongwei LouList of authors in order
- Landing page
-
https://doi.org/10.3390/f9120757Publisher landing page
- PDF URL
-
https://www.mdpi.com/1999-4907/9/12/757/pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1999-4907/9/12/757/pdfDirect OA link when available
- Concepts
-
Thematic Mapper, Backpropagation, Levenberg–Marquardt algorithm, Forest management, Partial least squares regression, Artificial neural network, Forest inventory, Computer science, Data mining, Tree (set theory), Statistics, Remote sensing, Mathematics, Artificial intelligence, Machine learning, Geography, Forestry, Satellite imagery, Mathematical analysisTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
35Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 7, 2024: 5, 2023: 4, 2022: 7, 2021: 3Per-year citation counts (last 5 years)
- References (count)
-
40Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2902799593 |
|---|---|
| doi | https://doi.org/10.3390/f9120757 |
| ids.doi | https://doi.org/10.3390/f9120757 |
| ids.mag | 2902799593 |
| ids.openalex | https://openalex.org/W2902799593 |
| fwci | 1.97284891 |
| type | article |
| title | A Levenberg–Marquardt Backpropagation Neural Network for Predicting Forest Growing Stock Based on the Least-Squares Equation Fitting Parameters |
| biblio.issue | 12 |
| biblio.volume | 9 |
| biblio.last_page | 757 |
| biblio.first_page | 757 |
| topics[0].id | https://openalex.org/T10111 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9990000128746033 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2303 |
| topics[0].subfield.display_name | Ecology |
| topics[0].display_name | Remote Sensing in Agriculture |
| topics[1].id | https://openalex.org/T11164 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9979000091552734 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2305 |
| topics[1].subfield.display_name | Environmental Engineering |
| topics[1].display_name | Remote Sensing and LiDAR Applications |
| topics[2].id | https://openalex.org/T11880 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.9923999905586243 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2309 |
| topics[2].subfield.display_name | Nature and Landscape Conservation |
| topics[2].display_name | Forest ecology and management |
| is_xpac | False |
| apc_list.value | 2000 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2165 |
| apc_paid.value | 2000 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2165 |
| concepts[0].id | https://openalex.org/C2775938548 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7523510456085205 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1565182 |
| concepts[0].display_name | Thematic Mapper |
| concepts[1].id | https://openalex.org/C155032097 |
| concepts[1].level | 3 |
| concepts[1].score | 0.728843092918396 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q798503 |
| concepts[1].display_name | Backpropagation |
| concepts[2].id | https://openalex.org/C87578567 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5703366994857788 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1426494 |
| concepts[2].display_name | Levenberg–Marquardt algorithm |
| concepts[3].id | https://openalex.org/C28631016 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5608941912651062 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q372561 |
| concepts[3].display_name | Forest management |
| concepts[4].id | https://openalex.org/C22354355 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5520142912864685 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q422009 |
| concepts[4].display_name | Partial least squares regression |
| concepts[5].id | https://openalex.org/C50644808 |
| concepts[5].level | 2 |
| concepts[5].score | 0.536586344242096 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[5].display_name | Artificial neural network |
| concepts[6].id | https://openalex.org/C147103442 |
| concepts[6].level | 3 |
| concepts[6].score | 0.5153998136520386 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1423188 |
| concepts[6].display_name | Forest inventory |
| concepts[7].id | https://openalex.org/C41008148 |
| concepts[7].level | 0 |
| concepts[7].score | 0.5099645853042603 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[7].display_name | Computer science |
| concepts[8].id | https://openalex.org/C124101348 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4286941885948181 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[8].display_name | Data mining |
| concepts[9].id | https://openalex.org/C113174947 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4278584420681 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2859736 |
| concepts[9].display_name | Tree (set theory) |
| concepts[10].id | https://openalex.org/C105795698 |
| concepts[10].level | 1 |
| concepts[10].score | 0.38719895482063293 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[10].display_name | Statistics |
| concepts[11].id | https://openalex.org/C62649853 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3651183843612671 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[11].display_name | Remote sensing |
| concepts[12].id | https://openalex.org/C33923547 |
| concepts[12].level | 0 |
| concepts[12].score | 0.3245062828063965 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[12].display_name | Mathematics |
| concepts[13].id | https://openalex.org/C154945302 |
| concepts[13].level | 1 |
| concepts[13].score | 0.2516462802886963 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[13].display_name | Artificial intelligence |
| concepts[14].id | https://openalex.org/C119857082 |
| concepts[14].level | 1 |
| concepts[14].score | 0.23785623908042908 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[14].display_name | Machine learning |
| concepts[15].id | https://openalex.org/C205649164 |
| concepts[15].level | 0 |
| concepts[15].score | 0.19847503304481506 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[15].display_name | Geography |
| concepts[16].id | https://openalex.org/C97137747 |
| concepts[16].level | 1 |
| concepts[16].score | 0.15792065858840942 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q38112 |
| concepts[16].display_name | Forestry |
| concepts[17].id | https://openalex.org/C2778102629 |
| concepts[17].level | 2 |
| concepts[17].score | 0.15466970205307007 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q725252 |
| concepts[17].display_name | Satellite imagery |
| concepts[18].id | https://openalex.org/C134306372 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[18].display_name | Mathematical analysis |
| keywords[0].id | https://openalex.org/keywords/thematic-mapper |
| keywords[0].score | 0.7523510456085205 |
| keywords[0].display_name | Thematic Mapper |
| keywords[1].id | https://openalex.org/keywords/backpropagation |
| keywords[1].score | 0.728843092918396 |
| keywords[1].display_name | Backpropagation |
| keywords[2].id | https://openalex.org/keywords/levenberg–marquardt-algorithm |
| keywords[2].score | 0.5703366994857788 |
| keywords[2].display_name | Levenberg–Marquardt algorithm |
| keywords[3].id | https://openalex.org/keywords/forest-management |
| keywords[3].score | 0.5608941912651062 |
| keywords[3].display_name | Forest management |
| keywords[4].id | https://openalex.org/keywords/partial-least-squares-regression |
| keywords[4].score | 0.5520142912864685 |
| keywords[4].display_name | Partial least squares regression |
| keywords[5].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[5].score | 0.536586344242096 |
| keywords[5].display_name | Artificial neural network |
| keywords[6].id | https://openalex.org/keywords/forest-inventory |
| keywords[6].score | 0.5153998136520386 |
| keywords[6].display_name | Forest inventory |
| keywords[7].id | https://openalex.org/keywords/computer-science |
| keywords[7].score | 0.5099645853042603 |
| keywords[7].display_name | Computer science |
| keywords[8].id | https://openalex.org/keywords/data-mining |
| keywords[8].score | 0.4286941885948181 |
| keywords[8].display_name | Data mining |
| keywords[9].id | https://openalex.org/keywords/tree |
| keywords[9].score | 0.4278584420681 |
| keywords[9].display_name | Tree (set theory) |
| keywords[10].id | https://openalex.org/keywords/statistics |
| keywords[10].score | 0.38719895482063293 |
| keywords[10].display_name | Statistics |
| keywords[11].id | https://openalex.org/keywords/remote-sensing |
| keywords[11].score | 0.3651183843612671 |
| keywords[11].display_name | Remote sensing |
| keywords[12].id | https://openalex.org/keywords/mathematics |
| keywords[12].score | 0.3245062828063965 |
| keywords[12].display_name | Mathematics |
| keywords[13].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[13].score | 0.2516462802886963 |
| keywords[13].display_name | Artificial intelligence |
| keywords[14].id | https://openalex.org/keywords/machine-learning |
| keywords[14].score | 0.23785623908042908 |
| keywords[14].display_name | Machine learning |
| keywords[15].id | https://openalex.org/keywords/geography |
| keywords[15].score | 0.19847503304481506 |
| keywords[15].display_name | Geography |
| keywords[16].id | https://openalex.org/keywords/forestry |
| keywords[16].score | 0.15792065858840942 |
| keywords[16].display_name | Forestry |
| keywords[17].id | https://openalex.org/keywords/satellite-imagery |
| keywords[17].score | 0.15466970205307007 |
| keywords[17].display_name | Satellite imagery |
| language | en |
| locations[0].id | doi:10.3390/f9120757 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S71324801 |
| locations[0].source.issn | 1999-4907 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1999-4907 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Forests |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1999-4907/9/12/757/pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Forests |
| locations[0].landing_page_url | https://doi.org/10.3390/f9120757 |
| locations[1].id | pmh:oai:doaj.org/article:48d6b730edda4aefb08948d60957ee06 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Forests, Vol 9, Iss 12, p 757 (2018) |
| locations[1].landing_page_url | https://doaj.org/article/48d6b730edda4aefb08948d60957ee06 |
| locations[2].id | pmh:oai:mdpi.com:/1999-4907/9/12/757/ |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400947 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | MDPI (MDPI AG) |
| locations[2].source.host_organization | https://openalex.org/I4210097602 |
| locations[2].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[2].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Forests |
| locations[2].landing_page_url | http://dx.doi.org/10.3390/f9120757 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5025545662 |
| authorships[0].author.orcid | https://orcid.org/0009-0003-5322-119X |
| authorships[0].author.display_name | Ruyi Zhou |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I1284762954 |
| authorships[0].affiliations[0].raw_affiliation_string | Key Laboratory of Forestry Intelligent Monitoring and Information Technology Research of Zhejiang Province, Zhejiang A & F University, Lin’an 311300, Zhejiang, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I1284762954 |
| authorships[0].affiliations[1].raw_affiliation_string | School of Information Engineering, Zhejiang A & F University, Lin’an 311300, Zhejiang, China |
| authorships[0].institutions[0].id | https://openalex.org/I1284762954 |
| authorships[0].institutions[0].ror | https://ror.org/02vj4rn06 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I1284762954 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Zhejiang A & F University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ruyi Zhou |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Key Laboratory of Forestry Intelligent Monitoring and Information Technology Research of Zhejiang Province, Zhejiang A & F University, Lin’an 311300, Zhejiang, China, School of Information Engineering, Zhejiang A & F University, Lin’an 311300, Zhejiang, China |
| authorships[1].author.id | https://openalex.org/A5033636430 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6316-303X |
| authorships[1].author.display_name | Dasheng Wu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I1284762954 |
| authorships[1].affiliations[0].raw_affiliation_string | Key Laboratory of Forestry Intelligent Monitoring and Information Technology Research of Zhejiang Province, Zhejiang A & F University, Lin’an 311300, Zhejiang, China |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I1284762954 |
| authorships[1].affiliations[1].raw_affiliation_string | School of Information Engineering, Zhejiang A & F University, Lin’an 311300, Zhejiang, China |
| authorships[1].institutions[0].id | https://openalex.org/I1284762954 |
| authorships[1].institutions[0].ror | https://ror.org/02vj4rn06 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I1284762954 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Zhejiang A & F University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Dasheng Wu |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Key Laboratory of Forestry Intelligent Monitoring and Information Technology Research of Zhejiang Province, Zhejiang A & F University, Lin’an 311300, Zhejiang, China, School of Information Engineering, Zhejiang A & F University, Lin’an 311300, Zhejiang, China |
| authorships[2].author.id | https://openalex.org/A5091039605 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5935-1524 |
| authorships[2].author.display_name | Luming Fang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I1284762954 |
| authorships[2].affiliations[0].raw_affiliation_string | Key Laboratory of Forestry Intelligent Monitoring and Information Technology Research of Zhejiang Province, Zhejiang A & F University, Lin’an 311300, Zhejiang, China |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I1284762954 |
| authorships[2].affiliations[1].raw_affiliation_string | School of Information Engineering, Zhejiang A & F University, Lin’an 311300, Zhejiang, China |
| authorships[2].institutions[0].id | https://openalex.org/I1284762954 |
| authorships[2].institutions[0].ror | https://ror.org/02vj4rn06 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I1284762954 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Zhejiang A & F University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Luming Fang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Key Laboratory of Forestry Intelligent Monitoring and Information Technology Research of Zhejiang Province, Zhejiang A & F University, Lin’an 311300, Zhejiang, China, School of Information Engineering, Zhejiang A & F University, Lin’an 311300, Zhejiang, China |
| authorships[3].author.id | https://openalex.org/A5100950669 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Aijun Xu |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I1284762954 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Information Engineering, Zhejiang A & F University, Lin’an 311300, Zhejiang, China |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I1284762954 |
| authorships[3].affiliations[1].raw_affiliation_string | Key Laboratory of Forestry Intelligent Monitoring and Information Technology Research of Zhejiang Province, Zhejiang A & F University, Lin’an 311300, Zhejiang, China |
| authorships[3].institutions[0].id | https://openalex.org/I1284762954 |
| authorships[3].institutions[0].ror | https://ror.org/02vj4rn06 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I1284762954 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Zhejiang A & F University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Aijun Xu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Key Laboratory of Forestry Intelligent Monitoring and Information Technology Research of Zhejiang Province, Zhejiang A & F University, Lin’an 311300, Zhejiang, China, School of Information Engineering, Zhejiang A & F University, Lin’an 311300, Zhejiang, China |
| authorships[4].author.id | https://openalex.org/A5016991998 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-4333-5471 |
| authorships[4].author.display_name | Xiongwei Lou |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I1284762954 |
| authorships[4].affiliations[0].raw_affiliation_string | Key Laboratory of Forestry Intelligent Monitoring and Information Technology Research of Zhejiang Province, Zhejiang A & F University, Lin’an 311300, Zhejiang, China |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I1284762954 |
| authorships[4].affiliations[1].raw_affiliation_string | School of Information Engineering, Zhejiang A & F University, Lin’an 311300, Zhejiang, China |
| authorships[4].institutions[0].id | https://openalex.org/I1284762954 |
| authorships[4].institutions[0].ror | https://ror.org/02vj4rn06 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I1284762954 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Zhejiang A & F University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Xiongwei Lou |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Key Laboratory of Forestry Intelligent Monitoring and Information Technology Research of Zhejiang Province, Zhejiang A & F University, Lin’an 311300, Zhejiang, China, School of Information Engineering, Zhejiang A & F University, Lin’an 311300, Zhejiang, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1999-4907/9/12/757/pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Levenberg–Marquardt Backpropagation Neural Network for Predicting Forest Growing Stock Based on the Least-Squares Equation Fitting Parameters |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10111 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9990000128746033 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2303 |
| primary_topic.subfield.display_name | Ecology |
| primary_topic.display_name | Remote Sensing in Agriculture |
| related_works | https://openalex.org/W2063262193, https://openalex.org/W2342509369, https://openalex.org/W2061775097, https://openalex.org/W2478500201, https://openalex.org/W3048650638, https://openalex.org/W3164758156, https://openalex.org/W2379583542, https://openalex.org/W4321133157, https://openalex.org/W2618439228, https://openalex.org/W3125078867 |
| cited_by_count | 35 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 7 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 5 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 4 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 7 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 3 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 5 |
| counts_by_year[6].year | 2019 |
| counts_by_year[6].cited_by_count | 3 |
| counts_by_year[7].year | 2013 |
| counts_by_year[7].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | doi:10.3390/f9120757 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S71324801 |
| best_oa_location.source.issn | 1999-4907 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1999-4907 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Forests |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1999-4907/9/12/757/pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Forests |
| best_oa_location.landing_page_url | https://doi.org/10.3390/f9120757 |
| primary_location.id | doi:10.3390/f9120757 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S71324801 |
| primary_location.source.issn | 1999-4907 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1999-4907 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Forests |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1999-4907/9/12/757/pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Forests |
| primary_location.landing_page_url | https://doi.org/10.3390/f9120757 |
| publication_date | 2018-12-05 |
| publication_year | 2018 |
| referenced_works | https://openalex.org/W2079196379, https://openalex.org/W2060670595, https://openalex.org/W6674942665, https://openalex.org/W1594879216, https://openalex.org/W2320803233, https://openalex.org/W2064783587, https://openalex.org/W2001614386, https://openalex.org/W2064525445, https://openalex.org/W2771885528, https://openalex.org/W2792773756, https://openalex.org/W2064558710, https://openalex.org/W2355713359, https://openalex.org/W1483184488, https://openalex.org/W1272693108, https://openalex.org/W1999790416, https://openalex.org/W1992014894, https://openalex.org/W2103496719, https://openalex.org/W2163241395, https://openalex.org/W2061410706, https://openalex.org/W1986964304, https://openalex.org/W2046735139, https://openalex.org/W2376619454, https://openalex.org/W6987375261, https://openalex.org/W2378680621, https://openalex.org/W2000532370, https://openalex.org/W2188581537, https://openalex.org/W2391483572, https://openalex.org/W2360654316, https://openalex.org/W2355877983, https://openalex.org/W2359821527, https://openalex.org/W2379505898, https://openalex.org/W2095357153, https://openalex.org/W283964855, https://openalex.org/W2555586750, https://openalex.org/W6709315381, https://openalex.org/W2394065510, https://openalex.org/W2099320852, https://openalex.org/W2357853744, https://openalex.org/W2016513791, https://openalex.org/W2377607378 |
| referenced_works_count | 40 |
| abstract_inverted_index.a | 19, 42, 139 |
| abstract_inverted_index.1, | 51 |
| abstract_inverted_index.17 | 108 |
| abstract_inverted_index.2, | 62 |
| abstract_inverted_index.3, | 76 |
| abstract_inverted_index.an | 102 |
| abstract_inverted_index.be | 212 |
| abstract_inverted_index.by | 83, 92, 214 |
| abstract_inverted_index.in | 12, 134, 183 |
| abstract_inverted_index.is | 167 |
| abstract_inverted_index.of | 36, 41, 116, 171, 175, 221 |
| abstract_inverted_index.on | 21, 30, 53, 64, 78, 144 |
| abstract_inverted_index.to | 9, 150 |
| abstract_inverted_index.The | 156, 185, 201 |
| abstract_inverted_index.and | 7, 14, 25, 74, 95, 123, 130, 181, 218 |
| abstract_inverted_index.are | 3, 90, 99 |
| abstract_inverted_index.for | 126, 177, 188, 196, 209 |
| abstract_inverted_index.one | 35 |
| abstract_inverted_index.the | 37, 54, 65, 79, 96, 124, 135, 145, 152, 160, 168, 206, 222 |
| abstract_inverted_index.was | 110, 148 |
| abstract_inverted_index.90%, | 165 |
| abstract_inverted_index.This | 27 |
| abstract_inverted_index.also | 203 |
| abstract_inverted_index.into | 69 |
| abstract_inverted_index.most | 38 |
| abstract_inverted_index.same | 136 |
| abstract_inverted_index.than | 195 |
| abstract_inverted_index.that | 159, 205 |
| abstract_inverted_index.tree | 59, 71, 85, 191, 199 |
| abstract_inverted_index.used | 149 |
| abstract_inverted_index.were | 49, 132, 193 |
| abstract_inverted_index.with | 57, 107 |
| abstract_inverted_index.based | 52, 63, 77, 143 |
| abstract_inverted_index.could | 211 |
| abstract_inverted_index.dense | 15 |
| abstract_inverted_index.field | 1 |
| abstract_inverted_index.group | 161 |
| abstract_inverted_index.mixed | 58, 197 |
| abstract_inverted_index.study | 28, 55, 66, 80 |
| abstract_inverted_index.three | 47 |
| abstract_inverted_index.total | 172 |
| abstract_inverted_index.which | 17, 166 |
| abstract_inverted_index.China. | 184 |
| abstract_inverted_index.First, | 46 |
| abstract_inverted_index.Scheme | 61, 75 |
| abstract_inverted_index.Third, | 112 |
| abstract_inverted_index.better | 194 |
| abstract_inverted_index.burden | 20 |
| abstract_inverted_index.design | 131, 182 |
| abstract_inverted_index.fitted | 91 |
| abstract_inverted_index.forest | 22, 32, 43, 127, 153, 178 |
| abstract_inverted_index.images | 115 |
| abstract_inverted_index.model, | 122 |
| abstract_inverted_index.neural | 141 |
| abstract_inverted_index.remote | 113 |
| abstract_inverted_index.showed | 158, 204 |
| abstract_inverted_index.stock, | 34 |
| abstract_inverted_index.stock. | 155 |
| abstract_inverted_index.system | 106 |
| abstract_inverted_index.Landsat | 117 |
| abstract_inverted_index.Lastly, | 138 |
| abstract_inverted_index.Mapper, | 119 |
| abstract_inverted_index.Second, | 101 |
| abstract_inverted_index.digital | 120 |
| abstract_inverted_index.divided | 68, 82 |
| abstract_inverted_index.factors | 89, 109 |
| abstract_inverted_index.fitting | 217 |
| abstract_inverted_index.focuses | 29 |
| abstract_inverted_index.groups; | 73 |
| abstract_inverted_index.growing | 33, 154 |
| abstract_inverted_index.highest | 169 |
| abstract_inverted_index.imposes | 18 |
| abstract_inverted_index.metrics | 208 |
| abstract_inverted_index.network | 142 |
| abstract_inverted_index.overall | 103 |
| abstract_inverted_index.predict | 151 |
| abstract_inverted_index.results | 157, 187, 202 |
| abstract_inverted_index.samples | 56, 67, 81 |
| abstract_inverted_index.schemes | 48 |
| abstract_inverted_index.sensing | 114 |
| abstract_inverted_index.species | 72, 86, 192 |
| abstract_inverted_index.surveys | 2 |
| abstract_inverted_index.Thematic | 118 |
| abstract_inverted_index.dominant | 70, 84, 190, 198 |
| abstract_inverted_index.equation | 216 |
| abstract_inverted_index.exceeded | 164 |
| abstract_inverted_index.factors. | 224 |
| abstract_inverted_index.forests, | 16 |
| abstract_inverted_index.improved | 213 |
| abstract_inverted_index.perform, | 10 |
| abstract_inverted_index.planning | 129, 180 |
| abstract_inverted_index.removed. | 100 |
| abstract_inverted_index.resource | 44 |
| abstract_inverted_index.sampling | 173 |
| abstract_inverted_index.species. | 200 |
| abstract_inverted_index.species; | 60 |
| abstract_inverted_index.standard | 170 |
| abstract_inverted_index.algorithm | 147 |
| abstract_inverted_index.database. | 137 |
| abstract_inverted_index.difficult | 8 |
| abstract_inverted_index.elevation | 121 |
| abstract_inverted_index.filtering | 220 |
| abstract_inverted_index.indicator | 105 |
| abstract_inverted_index.inventory | 125, 176 |
| abstract_inverted_index.personnel | 24 |
| abstract_inverted_index.precision | 163, 174 |
| abstract_inverted_index.equations, | 94 |
| abstract_inverted_index.especially | 11 |
| abstract_inverted_index.estimation | 162 |
| abstract_inverted_index.evaluation | 88, 104, 223 |
| abstract_inverted_index.expensive, | 4 |
| abstract_inverted_index.integrated | 133 |
| abstract_inverted_index.laborious, | 6 |
| abstract_inverted_index.management | 23, 128, 179 |
| abstract_inverted_index.parameters | 40 |
| abstract_inverted_index.predicting | 31 |
| abstract_inverted_index.prediction | 186, 210 |
| abstract_inverted_index.Traditional | 0 |
| abstract_inverted_index.assessment. | 45 |
| abstract_inverted_index.mountainous | 13 |
| abstract_inverted_index.performance | 207 |
| abstract_inverted_index.significant | 39 |
| abstract_inverted_index.established. | 111 |
| abstract_inverted_index.groups—the | 87 |
| abstract_inverted_index.researchers. | 26 |
| abstract_inverted_index.significance | 219 |
| abstract_inverted_index.least-squares | 93, 215 |
| abstract_inverted_index.distinguishing | 189 |
| abstract_inverted_index.fitted-factors | 98 |
| abstract_inverted_index.backpropagation | 140 |
| abstract_inverted_index.non-significant | 97 |
| abstract_inverted_index.time-consuming, | 5 |
| abstract_inverted_index.designed—Scheme | 50 |
| abstract_inverted_index.Levenberg–Marquardt | 146 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5033636430 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I1284762954 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/15 |
| sustainable_development_goals[0].score | 0.7599999904632568 |
| sustainable_development_goals[0].display_name | Life in Land |
| citation_normalized_percentile.value | 0.87274151 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |