A Lightweight Deep Exclusion Unfolding Network for Single Image Reflection Removal Article Swipe
YOU?
·
· 2025
· Open Access
·
Single Image Reflection Removal (SIRR) is a canonical blind source separation problem and refers to the issue of separating a reflection-contaminated image into a transmission and a reflection image. The core challenge lies in minimizing the commonalities among different sources. Existing deep learning approaches either neglect the significance of feature interactions or rely on heuristically designed architectures. In this paper, we propose a novel Deep Exclusion unfolding Network (DExNet), a lightweight, interpretable, and effective network architecture for SIRR. DExNet is principally constructed by unfolding and parameterizing a simple iterative Sparse and Auxiliary Feature Update (i-SAFU) algorithm, which is specifically designed to solve a new model-based SIRR optimization formulation incorporating a general exclusion prior. This general exclusion prior enables the unfolded SAFU module to inherently identify and penalize commonalities between the transmission and reflection features, ensuring more accurate separation. The principled design of DExNet not only enhances its interpretability but also significantly improves its performance. Comprehensive experiments on four benchmark datasets demonstrate that DExNet achieves state-of-the-art visual and quantitative results while utilizing only approximately 8\% of the parameters required by leading methods.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- http://arxiv.org/abs/2503.01938
- https://arxiv.org/pdf/2503.01938
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4415339058
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415339058Canonical identifier for this work in OpenAlex
- Title
-
A Lightweight Deep Exclusion Unfolding Network for Single Image Reflection RemovalWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-03-03Full publication date if available
- Authors
-
Junjie Huang, Tianrui Liu, Zihan Chen, Xinwang Liu, Meng Wang, Pier Luigi DragottiList of authors in order
- Landing page
-
https://arxiv.org/abs/2503.01938Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2503.01938Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2503.01938Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415339058 |
|---|---|
| doi | |
| ids.openalex | https://openalex.org/W4415339058 |
| fwci | 0.0 |
| type | article |
| title | A Lightweight Deep Exclusion Unfolding Network for Single Image Reflection Removal |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11019 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.994700014591217 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Image Enhancement Techniques |
| topics[1].id | https://openalex.org/T10688 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9771999716758728 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Image and Signal Denoising Methods |
| topics[2].id | https://openalex.org/T13114 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9405999779701233 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2214 |
| topics[2].subfield.display_name | Media Technology |
| topics[2].display_name | Image Processing Techniques and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2503.01938 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2503.01938 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2503.01938 |
| indexed_in | arxiv |
| authorships[0].author.id | https://openalex.org/A5037501616 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2986-4665 |
| authorships[0].author.display_name | Junjie Huang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Huang, Jun-Jie |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5102949546 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7926-3310 |
| authorships[1].author.display_name | Tianrui Liu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Liu, Tianrui |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100679794 |
| authorships[2].author.orcid | https://orcid.org/0009-0007-8387-5687 |
| authorships[2].author.display_name | Zihan Chen |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Chen, Zihan |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5101727888 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9066-1475 |
| authorships[3].author.display_name | Xinwang Liu |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Liu, Xinwang |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5100377147 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-3094-7735 |
| authorships[4].author.display_name | Meng Wang |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Wang, Meng |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5053203917 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-6073-2807 |
| authorships[5].author.display_name | Pier Luigi Dragotti |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Dragotti, Pier Luigi |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2503.01938 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-19T00:00:00 |
| display_name | A Lightweight Deep Exclusion Unfolding Network for Single Image Reflection Removal |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T04:12:42.849631 |
| primary_topic.id | https://openalex.org/T11019 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.994700014591217 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Image Enhancement Techniques |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | pmh:oai:arXiv.org:2503.01938 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2503.01938 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2503.01938 |
| primary_location.id | pmh:oai:arXiv.org:2503.01938 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2503.01938 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2503.01938 |
| publication_date | 2025-03-03 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 6, 19, 23, 26, 62, 69, 86, 102, 109 |
| abstract_inverted_index.In | 57 |
| abstract_inverted_index.by | 82, 178 |
| abstract_inverted_index.in | 33 |
| abstract_inverted_index.is | 5, 79, 97 |
| abstract_inverted_index.of | 17, 48, 141, 174 |
| abstract_inverted_index.on | 53, 156 |
| abstract_inverted_index.or | 51 |
| abstract_inverted_index.to | 14, 100, 122 |
| abstract_inverted_index.we | 60 |
| abstract_inverted_index.8\% | 173 |
| abstract_inverted_index.The | 29, 138 |
| abstract_inverted_index.and | 12, 25, 72, 84, 90, 125, 131, 166 |
| abstract_inverted_index.but | 148 |
| abstract_inverted_index.for | 76 |
| abstract_inverted_index.its | 146, 152 |
| abstract_inverted_index.new | 103 |
| abstract_inverted_index.not | 143 |
| abstract_inverted_index.the | 15, 35, 46, 118, 129, 175 |
| abstract_inverted_index.Deep | 64 |
| abstract_inverted_index.SAFU | 120 |
| abstract_inverted_index.SIRR | 105 |
| abstract_inverted_index.This | 113 |
| abstract_inverted_index.also | 149 |
| abstract_inverted_index.core | 30 |
| abstract_inverted_index.deep | 41 |
| abstract_inverted_index.four | 157 |
| abstract_inverted_index.into | 22 |
| abstract_inverted_index.lies | 32 |
| abstract_inverted_index.more | 135 |
| abstract_inverted_index.only | 144, 171 |
| abstract_inverted_index.rely | 52 |
| abstract_inverted_index.that | 161 |
| abstract_inverted_index.this | 58 |
| abstract_inverted_index.Image | 1 |
| abstract_inverted_index.SIRR. | 77 |
| abstract_inverted_index.among | 37 |
| abstract_inverted_index.blind | 8 |
| abstract_inverted_index.image | 21 |
| abstract_inverted_index.issue | 16 |
| abstract_inverted_index.novel | 63 |
| abstract_inverted_index.prior | 116 |
| abstract_inverted_index.solve | 101 |
| abstract_inverted_index.which | 96 |
| abstract_inverted_index.while | 169 |
| abstract_inverted_index.(SIRR) | 4 |
| abstract_inverted_index.DExNet | 78, 142, 162 |
| abstract_inverted_index.Single | 0 |
| abstract_inverted_index.Sparse | 89 |
| abstract_inverted_index.Update | 93 |
| abstract_inverted_index.design | 140 |
| abstract_inverted_index.either | 44 |
| abstract_inverted_index.image. | 28 |
| abstract_inverted_index.module | 121 |
| abstract_inverted_index.paper, | 59 |
| abstract_inverted_index.prior. | 112 |
| abstract_inverted_index.refers | 13 |
| abstract_inverted_index.simple | 87 |
| abstract_inverted_index.source | 9 |
| abstract_inverted_index.visual | 165 |
| abstract_inverted_index.Feature | 92 |
| abstract_inverted_index.Network | 67 |
| abstract_inverted_index.Removal | 3 |
| abstract_inverted_index.between | 128 |
| abstract_inverted_index.enables | 117 |
| abstract_inverted_index.feature | 49 |
| abstract_inverted_index.general | 110, 114 |
| abstract_inverted_index.leading | 179 |
| abstract_inverted_index.neglect | 45 |
| abstract_inverted_index.network | 74 |
| abstract_inverted_index.problem | 11 |
| abstract_inverted_index.propose | 61 |
| abstract_inverted_index.results | 168 |
| abstract_inverted_index.(i-SAFU) | 94 |
| abstract_inverted_index.Existing | 40 |
| abstract_inverted_index.accurate | 136 |
| abstract_inverted_index.achieves | 163 |
| abstract_inverted_index.datasets | 159 |
| abstract_inverted_index.designed | 55, 99 |
| abstract_inverted_index.enhances | 145 |
| abstract_inverted_index.ensuring | 134 |
| abstract_inverted_index.identify | 124 |
| abstract_inverted_index.improves | 151 |
| abstract_inverted_index.learning | 42 |
| abstract_inverted_index.methods. | 180 |
| abstract_inverted_index.penalize | 126 |
| abstract_inverted_index.required | 177 |
| abstract_inverted_index.sources. | 39 |
| abstract_inverted_index.unfolded | 119 |
| abstract_inverted_index.(DExNet), | 68 |
| abstract_inverted_index.Auxiliary | 91 |
| abstract_inverted_index.Exclusion | 65 |
| abstract_inverted_index.benchmark | 158 |
| abstract_inverted_index.canonical | 7 |
| abstract_inverted_index.challenge | 31 |
| abstract_inverted_index.different | 38 |
| abstract_inverted_index.effective | 73 |
| abstract_inverted_index.exclusion | 111, 115 |
| abstract_inverted_index.features, | 133 |
| abstract_inverted_index.iterative | 88 |
| abstract_inverted_index.unfolding | 66, 83 |
| abstract_inverted_index.utilizing | 170 |
| abstract_inverted_index.Reflection | 2 |
| abstract_inverted_index.algorithm, | 95 |
| abstract_inverted_index.approaches | 43 |
| abstract_inverted_index.inherently | 123 |
| abstract_inverted_index.minimizing | 34 |
| abstract_inverted_index.parameters | 176 |
| abstract_inverted_index.principled | 139 |
| abstract_inverted_index.reflection | 27, 132 |
| abstract_inverted_index.separating | 18 |
| abstract_inverted_index.separation | 10 |
| abstract_inverted_index.constructed | 81 |
| abstract_inverted_index.demonstrate | 160 |
| abstract_inverted_index.experiments | 155 |
| abstract_inverted_index.formulation | 107 |
| abstract_inverted_index.model-based | 104 |
| abstract_inverted_index.principally | 80 |
| abstract_inverted_index.separation. | 137 |
| abstract_inverted_index.architecture | 75 |
| abstract_inverted_index.interactions | 50 |
| abstract_inverted_index.lightweight, | 70 |
| abstract_inverted_index.optimization | 106 |
| abstract_inverted_index.performance. | 153 |
| abstract_inverted_index.quantitative | 167 |
| abstract_inverted_index.significance | 47 |
| abstract_inverted_index.specifically | 98 |
| abstract_inverted_index.transmission | 24, 130 |
| abstract_inverted_index.Comprehensive | 154 |
| abstract_inverted_index.approximately | 172 |
| abstract_inverted_index.commonalities | 36, 127 |
| abstract_inverted_index.heuristically | 54 |
| abstract_inverted_index.incorporating | 108 |
| abstract_inverted_index.significantly | 150 |
| abstract_inverted_index.architectures. | 56 |
| abstract_inverted_index.interpretable, | 71 |
| abstract_inverted_index.parameterizing | 85 |
| abstract_inverted_index.interpretability | 147 |
| abstract_inverted_index.state-of-the-art | 164 |
| abstract_inverted_index.reflection-contaminated | 20 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.52443825 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |