A linear regression model for quantile function data applied to paired pulmonary 3d CT scans Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2412.15049
This paper introduces a new objective measure for assessing treatment response in asthmatic patients using computed tomography (CT) imaging data. For each patient, CT scans were obtained before and after one year of monoclonal antibody treatment. Following image segmentation, the Hounsfield unit (HU) values of the voxels were encoded through quantile functions. It is hypothesized that patients with improved conditions after treatment will exhibit better expiration, reflected in higher HU values and an upward shift in the quantile curve. To objectively measure treatment response, a novel linear regression model on quantile functions is developed, drawing inspiration from Verde and Irpino (2010). Unlike their framework, the proposed model is parametric and incorporates distributional assumptions on the errors, enabling statistical inference. The model allows for the explicit calculation of regression coefficient estimators and confidence intervals, similar to conventional linear regression. The corresponding data and R code are available on GitHub to facilitate the reproducibility of the analyses presented.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2412.15049
- https://arxiv.org/pdf/2412.15049
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4405644657
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4405644657Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2412.15049Digital Object Identifier
- Title
-
A linear regression model for quantile function data applied to paired pulmonary 3d CT scansWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-12-19Full publication date if available
- Authors
-
Marie-Félicia Béclin, Pierre Lafaye de Micheaux, Nicolas Molinari, Frédéric OuimetList of authors in order
- Landing page
-
https://arxiv.org/abs/2412.15049Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2412.15049Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2412.15049Direct OA link when available
- Concepts
-
Quantile regression, Quantile, Linear regression, Pulmonary function testing, Function (biology), Mathematics, Linear model, Computer science, Statistics, Medicine, Radiology, Biology, Evolutionary biologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4405644657 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2412.15049 |
| ids.doi | https://doi.org/10.48550/arxiv.2412.15049 |
| ids.openalex | https://openalex.org/W4405644657 |
| fwci | |
| type | preprint |
| title | A linear regression model for quantile function data applied to paired pulmonary 3d CT scans |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10522 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9686999917030334 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | Medical Imaging Techniques and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C63817138 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7483251690864563 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q3455889 |
| concepts[0].display_name | Quantile regression |
| concepts[1].id | https://openalex.org/C118671147 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6071544289588928 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q578714 |
| concepts[1].display_name | Quantile |
| concepts[2].id | https://openalex.org/C48921125 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5267110466957092 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q10861030 |
| concepts[2].display_name | Linear regression |
| concepts[3].id | https://openalex.org/C75603125 |
| concepts[3].level | 2 |
| concepts[3].score | 0.46056586503982544 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1877462 |
| concepts[3].display_name | Pulmonary function testing |
| concepts[4].id | https://openalex.org/C14036430 |
| concepts[4].level | 2 |
| concepts[4].score | 0.430090069770813 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q3736076 |
| concepts[4].display_name | Function (biology) |
| concepts[5].id | https://openalex.org/C33923547 |
| concepts[5].level | 0 |
| concepts[5].score | 0.4159032702445984 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[5].display_name | Mathematics |
| concepts[6].id | https://openalex.org/C163175372 |
| concepts[6].level | 2 |
| concepts[6].score | 0.41349637508392334 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q3339222 |
| concepts[6].display_name | Linear model |
| concepts[7].id | https://openalex.org/C41008148 |
| concepts[7].level | 0 |
| concepts[7].score | 0.39075347781181335 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[7].display_name | Computer science |
| concepts[8].id | https://openalex.org/C105795698 |
| concepts[8].level | 1 |
| concepts[8].score | 0.386020690202713 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[8].display_name | Statistics |
| concepts[9].id | https://openalex.org/C71924100 |
| concepts[9].level | 0 |
| concepts[9].score | 0.2850591540336609 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[9].display_name | Medicine |
| concepts[10].id | https://openalex.org/C126838900 |
| concepts[10].level | 1 |
| concepts[10].score | 0.2355075180530548 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[10].display_name | Radiology |
| concepts[11].id | https://openalex.org/C86803240 |
| concepts[11].level | 0 |
| concepts[11].score | 0.07405009865760803 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[11].display_name | Biology |
| concepts[12].id | https://openalex.org/C78458016 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q840400 |
| concepts[12].display_name | Evolutionary biology |
| keywords[0].id | https://openalex.org/keywords/quantile-regression |
| keywords[0].score | 0.7483251690864563 |
| keywords[0].display_name | Quantile regression |
| keywords[1].id | https://openalex.org/keywords/quantile |
| keywords[1].score | 0.6071544289588928 |
| keywords[1].display_name | Quantile |
| keywords[2].id | https://openalex.org/keywords/linear-regression |
| keywords[2].score | 0.5267110466957092 |
| keywords[2].display_name | Linear regression |
| keywords[3].id | https://openalex.org/keywords/pulmonary-function-testing |
| keywords[3].score | 0.46056586503982544 |
| keywords[3].display_name | Pulmonary function testing |
| keywords[4].id | https://openalex.org/keywords/function |
| keywords[4].score | 0.430090069770813 |
| keywords[4].display_name | Function (biology) |
| keywords[5].id | https://openalex.org/keywords/mathematics |
| keywords[5].score | 0.4159032702445984 |
| keywords[5].display_name | Mathematics |
| keywords[6].id | https://openalex.org/keywords/linear-model |
| keywords[6].score | 0.41349637508392334 |
| keywords[6].display_name | Linear model |
| keywords[7].id | https://openalex.org/keywords/computer-science |
| keywords[7].score | 0.39075347781181335 |
| keywords[7].display_name | Computer science |
| keywords[8].id | https://openalex.org/keywords/statistics |
| keywords[8].score | 0.386020690202713 |
| keywords[8].display_name | Statistics |
| keywords[9].id | https://openalex.org/keywords/medicine |
| keywords[9].score | 0.2850591540336609 |
| keywords[9].display_name | Medicine |
| keywords[10].id | https://openalex.org/keywords/radiology |
| keywords[10].score | 0.2355075180530548 |
| keywords[10].display_name | Radiology |
| keywords[11].id | https://openalex.org/keywords/biology |
| keywords[11].score | 0.07405009865760803 |
| keywords[11].display_name | Biology |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2412.15049 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2412.15049 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2412.15049 |
| locations[1].id | doi:10.48550/arxiv.2412.15049 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2412.15049 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5115568692 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Marie-Félicia Béclin |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Béclin, Marie-Félicia |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5021848861 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0247-5136 |
| authorships[1].author.display_name | Pierre Lafaye de Micheaux |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | de Micheaux, Pierre Lafaye |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5111434415 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Nicolas Molinari |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Molinari, Nicolas |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5010318685 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-7933-5265 |
| authorships[3].author.display_name | Frédéric Ouimet |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Ouimet, Frédéric |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2412.15049 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A linear regression model for quantile function data applied to paired pulmonary 3d CT scans |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10522 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9686999917030334 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | Medical Imaging Techniques and Applications |
| related_works | https://openalex.org/W4206511378, https://openalex.org/W4206618949, https://openalex.org/W2526321210, https://openalex.org/W3205863630, https://openalex.org/W4318833145, https://openalex.org/W2364275385, https://openalex.org/W4388704167, https://openalex.org/W2007977664, https://openalex.org/W4376874882, https://openalex.org/W2224749288 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2412.15049 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2412.15049 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2412.15049 |
| primary_location.id | pmh:oai:arXiv.org:2412.15049 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2412.15049 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2412.15049 |
| publication_date | 2024-12-19 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.R | 142 |
| abstract_inverted_index.a | 3, 84 |
| abstract_inverted_index.CT | 23 |
| abstract_inverted_index.HU | 69 |
| abstract_inverted_index.It | 52 |
| abstract_inverted_index.To | 79 |
| abstract_inverted_index.an | 72 |
| abstract_inverted_index.in | 11, 67, 75 |
| abstract_inverted_index.is | 53, 92, 107 |
| abstract_inverted_index.of | 32, 44, 126, 152 |
| abstract_inverted_index.on | 89, 113, 146 |
| abstract_inverted_index.to | 134, 148 |
| abstract_inverted_index.For | 20 |
| abstract_inverted_index.The | 119, 138 |
| abstract_inverted_index.and | 28, 71, 98, 109, 130, 141 |
| abstract_inverted_index.are | 144 |
| abstract_inverted_index.for | 7, 122 |
| abstract_inverted_index.new | 4 |
| abstract_inverted_index.one | 30 |
| abstract_inverted_index.the | 39, 45, 76, 104, 114, 123, 150, 153 |
| abstract_inverted_index.(CT) | 17 |
| abstract_inverted_index.(HU) | 42 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.code | 143 |
| abstract_inverted_index.data | 140 |
| abstract_inverted_index.each | 21 |
| abstract_inverted_index.from | 96 |
| abstract_inverted_index.that | 55 |
| abstract_inverted_index.unit | 41 |
| abstract_inverted_index.were | 25, 47 |
| abstract_inverted_index.will | 62 |
| abstract_inverted_index.with | 57 |
| abstract_inverted_index.year | 31 |
| abstract_inverted_index.Verde | 97 |
| abstract_inverted_index.after | 29, 60 |
| abstract_inverted_index.data. | 19 |
| abstract_inverted_index.image | 37 |
| abstract_inverted_index.model | 88, 106, 120 |
| abstract_inverted_index.novel | 85 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.scans | 24 |
| abstract_inverted_index.shift | 74 |
| abstract_inverted_index.their | 102 |
| abstract_inverted_index.using | 14 |
| abstract_inverted_index.GitHub | 147 |
| abstract_inverted_index.Irpino | 99 |
| abstract_inverted_index.Unlike | 101 |
| abstract_inverted_index.allows | 121 |
| abstract_inverted_index.before | 27 |
| abstract_inverted_index.better | 64 |
| abstract_inverted_index.curve. | 78 |
| abstract_inverted_index.higher | 68 |
| abstract_inverted_index.linear | 86, 136 |
| abstract_inverted_index.upward | 73 |
| abstract_inverted_index.values | 43, 70 |
| abstract_inverted_index.voxels | 46 |
| abstract_inverted_index.(2010). | 100 |
| abstract_inverted_index.drawing | 94 |
| abstract_inverted_index.encoded | 48 |
| abstract_inverted_index.errors, | 115 |
| abstract_inverted_index.exhibit | 63 |
| abstract_inverted_index.imaging | 18 |
| abstract_inverted_index.measure | 6, 81 |
| abstract_inverted_index.similar | 133 |
| abstract_inverted_index.through | 49 |
| abstract_inverted_index.analyses | 154 |
| abstract_inverted_index.antibody | 34 |
| abstract_inverted_index.computed | 15 |
| abstract_inverted_index.enabling | 116 |
| abstract_inverted_index.explicit | 124 |
| abstract_inverted_index.improved | 58 |
| abstract_inverted_index.obtained | 26 |
| abstract_inverted_index.patient, | 22 |
| abstract_inverted_index.patients | 13, 56 |
| abstract_inverted_index.proposed | 105 |
| abstract_inverted_index.quantile | 50, 77, 90 |
| abstract_inverted_index.response | 10 |
| abstract_inverted_index.Following | 36 |
| abstract_inverted_index.assessing | 8 |
| abstract_inverted_index.asthmatic | 12 |
| abstract_inverted_index.available | 145 |
| abstract_inverted_index.functions | 91 |
| abstract_inverted_index.objective | 5 |
| abstract_inverted_index.reflected | 66 |
| abstract_inverted_index.response, | 83 |
| abstract_inverted_index.treatment | 9, 61, 82 |
| abstract_inverted_index.Hounsfield | 40 |
| abstract_inverted_index.conditions | 59 |
| abstract_inverted_index.confidence | 131 |
| abstract_inverted_index.developed, | 93 |
| abstract_inverted_index.estimators | 129 |
| abstract_inverted_index.facilitate | 149 |
| abstract_inverted_index.framework, | 103 |
| abstract_inverted_index.functions. | 51 |
| abstract_inverted_index.inference. | 118 |
| abstract_inverted_index.intervals, | 132 |
| abstract_inverted_index.introduces | 2 |
| abstract_inverted_index.monoclonal | 33 |
| abstract_inverted_index.parametric | 108 |
| abstract_inverted_index.presented. | 155 |
| abstract_inverted_index.regression | 87, 127 |
| abstract_inverted_index.tomography | 16 |
| abstract_inverted_index.treatment. | 35 |
| abstract_inverted_index.assumptions | 112 |
| abstract_inverted_index.calculation | 125 |
| abstract_inverted_index.coefficient | 128 |
| abstract_inverted_index.expiration, | 65 |
| abstract_inverted_index.inspiration | 95 |
| abstract_inverted_index.objectively | 80 |
| abstract_inverted_index.regression. | 137 |
| abstract_inverted_index.statistical | 117 |
| abstract_inverted_index.conventional | 135 |
| abstract_inverted_index.hypothesized | 54 |
| abstract_inverted_index.incorporates | 110 |
| abstract_inverted_index.corresponding | 139 |
| abstract_inverted_index.segmentation, | 38 |
| abstract_inverted_index.distributional | 111 |
| abstract_inverted_index.reproducibility | 151 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |