A Local-Sparse-Information-Aggregation Transformer with Explicit Contour Guidance for SAR Ship Detection Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.3390/rs14205247
Ship detection in synthetic aperture radar (SAR) images has witnessed rapid development in recent years, especially after the adoption of convolutional neural network (CNN)-based methods. Recently, a transformer using self-attention and a feed forward neural network with a encoder-decoder structure has received much attention from researchers, due to its intrinsic characteristics of global-relation modeling between pixels and an enlarged global receptive field. However, when adapting transformers to SAR ship detection, one challenging issue cannot be ignored. Background clutter, such as a coast, an island, or a sea wave, made previous object detectors easily miss ships with a blurred contour. Therefore, in this paper, we propose a local-sparse-information-aggregation transformer with explicit contour guidance for ship detection in SAR images. Based on the Swin Transformer architecture, in order to effectively aggregate sparse meaningful cues of small-scale ships, a deformable attention mechanism is incorporated to change the original self-attention mechanism. Moreover, a novel contour-guided shape-enhancement module is proposed to explicitly enforce the contour constraints on the one-dimensional transformer architecture. Experimental results show that our proposed method achieves superior performance on the challenging HRSID and SSDD datasets.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/rs14205247
- https://www.mdpi.com/2072-4292/14/20/5247/pdf?version=1666757388
- OA Status
- gold
- Cited By
- 19
- References
- 60
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4306964296
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4306964296Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/rs14205247Digital Object Identifier
- Title
-
A Local-Sparse-Information-Aggregation Transformer with Explicit Contour Guidance for SAR Ship DetectionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-10-20Full publication date if available
- Authors
-
Hao Shi, Bingqian Chai, Yupei Wang, Liang ChenList of authors in order
- Landing page
-
https://doi.org/10.3390/rs14205247Publisher landing page
- PDF URL
-
https://www.mdpi.com/2072-4292/14/20/5247/pdf?version=1666757388Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2072-4292/14/20/5247/pdf?version=1666757388Direct OA link when available
- Concepts
-
Computer science, Artificial intelligence, Synthetic aperture radar, Transformer, Clutter, Computer vision, Detector, Convolutional neural network, Encoder, Pattern recognition (psychology), Radar, Telecommunications, Physics, Quantum mechanics, Operating system, VoltageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
19Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4, 2024: 8, 2023: 7Per-year citation counts (last 5 years)
- References (count)
-
60Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4306964296 |
|---|---|
| doi | https://doi.org/10.3390/rs14205247 |
| ids.doi | https://doi.org/10.3390/rs14205247 |
| ids.openalex | https://openalex.org/W4306964296 |
| fwci | 2.35204422 |
| type | article |
| title | A Local-Sparse-Information-Aggregation Transformer with Explicit Contour Guidance for SAR Ship Detection |
| biblio.issue | 20 |
| biblio.volume | 14 |
| biblio.last_page | 5247 |
| biblio.first_page | 5247 |
| topics[0].id | https://openalex.org/T10036 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Neural Network Applications |
| topics[1].id | https://openalex.org/T10801 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9939000010490417 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2202 |
| topics[1].subfield.display_name | Aerospace Engineering |
| topics[1].display_name | Synthetic Aperture Radar (SAR) Applications and Techniques |
| topics[2].id | https://openalex.org/T10191 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9919999837875366 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2202 |
| topics[2].subfield.display_name | Aerospace Engineering |
| topics[2].display_name | Robotics and Sensor-Based Localization |
| is_xpac | False |
| apc_list.value | 2500 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2707 |
| apc_paid.value | 2500 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2707 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.821433424949646 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6459338665008545 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C87360688 |
| concepts[2].level | 2 |
| concepts[2].score | 0.622336745262146 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q740686 |
| concepts[2].display_name | Synthetic aperture radar |
| concepts[3].id | https://openalex.org/C66322947 |
| concepts[3].level | 3 |
| concepts[3].score | 0.6011813879013062 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11658 |
| concepts[3].display_name | Transformer |
| concepts[4].id | https://openalex.org/C132094186 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5262203216552734 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q641585 |
| concepts[4].display_name | Clutter |
| concepts[5].id | https://openalex.org/C31972630 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5192254185676575 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[5].display_name | Computer vision |
| concepts[6].id | https://openalex.org/C94915269 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4602154493331909 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1834857 |
| concepts[6].display_name | Detector |
| concepts[7].id | https://openalex.org/C81363708 |
| concepts[7].level | 2 |
| concepts[7].score | 0.42083340883255005 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[7].display_name | Convolutional neural network |
| concepts[8].id | https://openalex.org/C118505674 |
| concepts[8].level | 2 |
| concepts[8].score | 0.41992855072021484 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q42586063 |
| concepts[8].display_name | Encoder |
| concepts[9].id | https://openalex.org/C153180895 |
| concepts[9].level | 2 |
| concepts[9].score | 0.38417884707450867 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[9].display_name | Pattern recognition (psychology) |
| concepts[10].id | https://openalex.org/C554190296 |
| concepts[10].level | 2 |
| concepts[10].score | 0.2320949137210846 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q47528 |
| concepts[10].display_name | Radar |
| concepts[11].id | https://openalex.org/C76155785 |
| concepts[11].level | 1 |
| concepts[11].score | 0.10767781734466553 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[11].display_name | Telecommunications |
| concepts[12].id | https://openalex.org/C121332964 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[12].display_name | Physics |
| concepts[13].id | https://openalex.org/C62520636 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[13].display_name | Quantum mechanics |
| concepts[14].id | https://openalex.org/C111919701 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[14].display_name | Operating system |
| concepts[15].id | https://openalex.org/C165801399 |
| concepts[15].level | 2 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q25428 |
| concepts[15].display_name | Voltage |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.821433424949646 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.6459338665008545 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/synthetic-aperture-radar |
| keywords[2].score | 0.622336745262146 |
| keywords[2].display_name | Synthetic aperture radar |
| keywords[3].id | https://openalex.org/keywords/transformer |
| keywords[3].score | 0.6011813879013062 |
| keywords[3].display_name | Transformer |
| keywords[4].id | https://openalex.org/keywords/clutter |
| keywords[4].score | 0.5262203216552734 |
| keywords[4].display_name | Clutter |
| keywords[5].id | https://openalex.org/keywords/computer-vision |
| keywords[5].score | 0.5192254185676575 |
| keywords[5].display_name | Computer vision |
| keywords[6].id | https://openalex.org/keywords/detector |
| keywords[6].score | 0.4602154493331909 |
| keywords[6].display_name | Detector |
| keywords[7].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[7].score | 0.42083340883255005 |
| keywords[7].display_name | Convolutional neural network |
| keywords[8].id | https://openalex.org/keywords/encoder |
| keywords[8].score | 0.41992855072021484 |
| keywords[8].display_name | Encoder |
| keywords[9].id | https://openalex.org/keywords/pattern-recognition |
| keywords[9].score | 0.38417884707450867 |
| keywords[9].display_name | Pattern recognition (psychology) |
| keywords[10].id | https://openalex.org/keywords/radar |
| keywords[10].score | 0.2320949137210846 |
| keywords[10].display_name | Radar |
| keywords[11].id | https://openalex.org/keywords/telecommunications |
| keywords[11].score | 0.10767781734466553 |
| keywords[11].display_name | Telecommunications |
| language | en |
| locations[0].id | doi:10.3390/rs14205247 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S43295729 |
| locations[0].source.issn | 2072-4292 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2072-4292 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Remote Sensing |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2072-4292/14/20/5247/pdf?version=1666757388 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Remote Sensing |
| locations[0].landing_page_url | https://doi.org/10.3390/rs14205247 |
| locations[1].id | pmh:oai:doaj.org/article:1410fa7e847c41fcbd7c0ef265cc89d6 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Remote Sensing, Vol 14, Iss 20, p 5247 (2022) |
| locations[1].landing_page_url | https://doaj.org/article/1410fa7e847c41fcbd7c0ef265cc89d6 |
| locations[2].id | pmh:oai:mdpi.com:/2072-4292/14/20/5247/ |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400947 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | MDPI (MDPI AG) |
| locations[2].source.host_organization | https://openalex.org/I4210097602 |
| locations[2].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[2].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Remote Sensing; Volume 14; Issue 20; Pages: 5247 |
| locations[2].landing_page_url | https://dx.doi.org/10.3390/rs14205247 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5085178924 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2013-6592 |
| authorships[0].author.display_name | Hao Shi |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I125839683, https://openalex.org/I50632499 |
| authorships[0].affiliations[0].raw_affiliation_string | Chongqing Innovation Center, Beijing Institute of Technology, Chongqing 401120, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I125839683 |
| authorships[0].affiliations[1].raw_affiliation_string | Radar Research Lab, School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China |
| authorships[0].institutions[0].id | https://openalex.org/I125839683 |
| authorships[0].institutions[0].ror | https://ror.org/01skt4w74 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I125839683, https://openalex.org/I890469752 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Beijing Institute of Technology |
| authorships[0].institutions[1].id | https://openalex.org/I50632499 |
| authorships[0].institutions[1].ror | https://ror.org/04vgbd477 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I50632499 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Chongqing University of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hao Shi |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Chongqing Innovation Center, Beijing Institute of Technology, Chongqing 401120, China, Radar Research Lab, School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China |
| authorships[1].author.id | https://openalex.org/A5044546726 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Bingqian Chai |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I125839683 |
| authorships[1].affiliations[0].raw_affiliation_string | Radar Research Lab, School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China |
| authorships[1].institutions[0].id | https://openalex.org/I125839683 |
| authorships[1].institutions[0].ror | https://ror.org/01skt4w74 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I125839683, https://openalex.org/I890469752 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Beijing Institute of Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Bingqian Chai |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Radar Research Lab, School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China |
| authorships[2].author.id | https://openalex.org/A5079551552 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9771-6229 |
| authorships[2].author.display_name | Yupei Wang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I125839683, https://openalex.org/I50632499 |
| authorships[2].affiliations[0].raw_affiliation_string | Chongqing Innovation Center, Beijing Institute of Technology, Chongqing 401120, China |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I125839683 |
| authorships[2].affiliations[1].raw_affiliation_string | Radar Research Lab, School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China |
| authorships[2].institutions[0].id | https://openalex.org/I125839683 |
| authorships[2].institutions[0].ror | https://ror.org/01skt4w74 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I125839683, https://openalex.org/I890469752 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Beijing Institute of Technology |
| authorships[2].institutions[1].id | https://openalex.org/I50632499 |
| authorships[2].institutions[1].ror | https://ror.org/04vgbd477 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I50632499 |
| authorships[2].institutions[1].country_code | CN |
| authorships[2].institutions[1].display_name | Chongqing University of Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yupei Wang |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Chongqing Innovation Center, Beijing Institute of Technology, Chongqing 401120, China, Radar Research Lab, School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China |
| authorships[3].author.id | https://openalex.org/A5037632839 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-8015-4867 |
| authorships[3].author.display_name | Liang Chen |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I125839683 |
| authorships[3].affiliations[0].raw_affiliation_string | Radar Research Lab, School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I125839683, https://openalex.org/I50632499 |
| authorships[3].affiliations[1].raw_affiliation_string | Chongqing Innovation Center, Beijing Institute of Technology, Chongqing 401120, China |
| authorships[3].institutions[0].id | https://openalex.org/I125839683 |
| authorships[3].institutions[0].ror | https://ror.org/01skt4w74 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I125839683, https://openalex.org/I890469752 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Beijing Institute of Technology |
| authorships[3].institutions[1].id | https://openalex.org/I50632499 |
| authorships[3].institutions[1].ror | https://ror.org/04vgbd477 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I50632499 |
| authorships[3].institutions[1].country_code | CN |
| authorships[3].institutions[1].display_name | Chongqing University of Technology |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Liang Chen |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Chongqing Innovation Center, Beijing Institute of Technology, Chongqing 401120, China, Radar Research Lab, School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2072-4292/14/20/5247/pdf?version=1666757388 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2022-10-21T00:00:00 |
| display_name | A Local-Sparse-Information-Aggregation Transformer with Explicit Contour Guidance for SAR Ship Detection |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10036 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Neural Network Applications |
| related_works | https://openalex.org/W2130674020, https://openalex.org/W2093748878, https://openalex.org/W2333771223, https://openalex.org/W2120056845, https://openalex.org/W1981531423, https://openalex.org/W4394861761, https://openalex.org/W2035264131, https://openalex.org/W1679012645, https://openalex.org/W1925461966, https://openalex.org/W3036468168 |
| cited_by_count | 19 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 8 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 7 |
| locations_count | 3 |
| best_oa_location.id | doi:10.3390/rs14205247 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S43295729 |
| best_oa_location.source.issn | 2072-4292 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2072-4292 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Remote Sensing |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2072-4292/14/20/5247/pdf?version=1666757388 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Remote Sensing |
| best_oa_location.landing_page_url | https://doi.org/10.3390/rs14205247 |
| primary_location.id | doi:10.3390/rs14205247 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S43295729 |
| primary_location.source.issn | 2072-4292 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2072-4292 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Remote Sensing |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2072-4292/14/20/5247/pdf?version=1666757388 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Remote Sensing |
| primary_location.landing_page_url | https://doi.org/10.3390/rs14205247 |
| publication_date | 2022-10-20 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2079299474, https://openalex.org/W2167220279, https://openalex.org/W2953303055, https://openalex.org/W639708223, https://openalex.org/W2193145675, https://openalex.org/W2963037989, https://openalex.org/W2982770724, https://openalex.org/W2565639579, https://openalex.org/W2952565170, https://openalex.org/W3048631361, https://openalex.org/W2765739551, https://openalex.org/W6739901393, https://openalex.org/W1902237438, https://openalex.org/W3138516171, https://openalex.org/W3021258337, https://openalex.org/W2747165560, https://openalex.org/W6769868426, https://openalex.org/W2774244034, https://openalex.org/W3012991496, https://openalex.org/W3041525128, https://openalex.org/W6807422500, https://openalex.org/W6805691052, https://openalex.org/W6839473959, https://openalex.org/W4206988248, https://openalex.org/W3033996275, https://openalex.org/W3131500599, https://openalex.org/W4312950730, https://openalex.org/W3160694286, https://openalex.org/W2884561390, https://openalex.org/W2963150697, https://openalex.org/W2964241181, https://openalex.org/W3035396860, https://openalex.org/W3172752666, https://openalex.org/W2963091558, https://openalex.org/W2982220924, https://openalex.org/W2964080601, https://openalex.org/W2962851485, https://openalex.org/W3096609285, https://openalex.org/W3107331169, https://openalex.org/W1536680647, https://openalex.org/W3203974803, https://openalex.org/W4214627427, https://openalex.org/W6840177074, https://openalex.org/W4205856156, https://openalex.org/W6841961980, https://openalex.org/W4214570093, https://openalex.org/W2194775991, https://openalex.org/W2549139847, https://openalex.org/W3180954604, https://openalex.org/W2961699889, https://openalex.org/W4229373083, https://openalex.org/W3106250896, https://openalex.org/W4207076822, https://openalex.org/W3102692100, https://openalex.org/W4285143550, https://openalex.org/W4293370549, https://openalex.org/W4205338556, https://openalex.org/W2981640322, https://openalex.org/W4286364677, https://openalex.org/W3103294617 |
| referenced_works_count | 60 |
| abstract_inverted_index.a | 26, 31, 37, 80, 85, 96, 105, 135, 148 |
| abstract_inverted_index.an | 57, 82 |
| abstract_inverted_index.as | 79 |
| abstract_inverted_index.be | 74 |
| abstract_inverted_index.in | 2, 12, 100, 115, 124 |
| abstract_inverted_index.is | 139, 153 |
| abstract_inverted_index.of | 19, 51, 132 |
| abstract_inverted_index.on | 119, 161, 176 |
| abstract_inverted_index.or | 84 |
| abstract_inverted_index.to | 47, 66, 126, 141, 155 |
| abstract_inverted_index.we | 103 |
| abstract_inverted_index.SAR | 67, 116 |
| abstract_inverted_index.and | 30, 56, 180 |
| abstract_inverted_index.due | 46 |
| abstract_inverted_index.for | 112 |
| abstract_inverted_index.has | 8, 40 |
| abstract_inverted_index.its | 48 |
| abstract_inverted_index.one | 70 |
| abstract_inverted_index.our | 170 |
| abstract_inverted_index.sea | 86 |
| abstract_inverted_index.the | 17, 120, 143, 158, 162, 177 |
| abstract_inverted_index.SSDD | 181 |
| abstract_inverted_index.Ship | 0 |
| abstract_inverted_index.Swin | 121 |
| abstract_inverted_index.cues | 131 |
| abstract_inverted_index.feed | 32 |
| abstract_inverted_index.from | 44 |
| abstract_inverted_index.made | 88 |
| abstract_inverted_index.miss | 93 |
| abstract_inverted_index.much | 42 |
| abstract_inverted_index.ship | 68, 113 |
| abstract_inverted_index.show | 168 |
| abstract_inverted_index.such | 78 |
| abstract_inverted_index.that | 169 |
| abstract_inverted_index.this | 101 |
| abstract_inverted_index.when | 63 |
| abstract_inverted_index.with | 36, 95, 108 |
| abstract_inverted_index.(SAR) | 6 |
| abstract_inverted_index.Based | 118 |
| abstract_inverted_index.HRSID | 179 |
| abstract_inverted_index.after | 16 |
| abstract_inverted_index.issue | 72 |
| abstract_inverted_index.novel | 149 |
| abstract_inverted_index.order | 125 |
| abstract_inverted_index.radar | 5 |
| abstract_inverted_index.rapid | 10 |
| abstract_inverted_index.ships | 94 |
| abstract_inverted_index.using | 28 |
| abstract_inverted_index.wave, | 87 |
| abstract_inverted_index.cannot | 73 |
| abstract_inverted_index.change | 142 |
| abstract_inverted_index.coast, | 81 |
| abstract_inverted_index.easily | 92 |
| abstract_inverted_index.field. | 61 |
| abstract_inverted_index.global | 59 |
| abstract_inverted_index.images | 7 |
| abstract_inverted_index.method | 172 |
| abstract_inverted_index.module | 152 |
| abstract_inverted_index.neural | 21, 34 |
| abstract_inverted_index.object | 90 |
| abstract_inverted_index.paper, | 102 |
| abstract_inverted_index.pixels | 55 |
| abstract_inverted_index.recent | 13 |
| abstract_inverted_index.ships, | 134 |
| abstract_inverted_index.sparse | 129 |
| abstract_inverted_index.years, | 14 |
| abstract_inverted_index.between | 54 |
| abstract_inverted_index.blurred | 97 |
| abstract_inverted_index.contour | 110, 159 |
| abstract_inverted_index.enforce | 157 |
| abstract_inverted_index.forward | 33 |
| abstract_inverted_index.images. | 117 |
| abstract_inverted_index.island, | 83 |
| abstract_inverted_index.network | 22, 35 |
| abstract_inverted_index.propose | 104 |
| abstract_inverted_index.results | 167 |
| abstract_inverted_index.However, | 62 |
| abstract_inverted_index.achieves | 173 |
| abstract_inverted_index.adapting | 64 |
| abstract_inverted_index.adoption | 18 |
| abstract_inverted_index.aperture | 4 |
| abstract_inverted_index.clutter, | 77 |
| abstract_inverted_index.contour. | 98 |
| abstract_inverted_index.enlarged | 58 |
| abstract_inverted_index.explicit | 109 |
| abstract_inverted_index.guidance | 111 |
| abstract_inverted_index.ignored. | 75 |
| abstract_inverted_index.methods. | 24 |
| abstract_inverted_index.modeling | 53 |
| abstract_inverted_index.original | 144 |
| abstract_inverted_index.previous | 89 |
| abstract_inverted_index.proposed | 154, 171 |
| abstract_inverted_index.received | 41 |
| abstract_inverted_index.superior | 174 |
| abstract_inverted_index.Moreover, | 147 |
| abstract_inverted_index.Recently, | 25 |
| abstract_inverted_index.aggregate | 128 |
| abstract_inverted_index.attention | 43, 137 |
| abstract_inverted_index.datasets. | 182 |
| abstract_inverted_index.detection | 1, 114 |
| abstract_inverted_index.detectors | 91 |
| abstract_inverted_index.intrinsic | 49 |
| abstract_inverted_index.mechanism | 138 |
| abstract_inverted_index.receptive | 60 |
| abstract_inverted_index.structure | 39 |
| abstract_inverted_index.synthetic | 3 |
| abstract_inverted_index.witnessed | 9 |
| abstract_inverted_index.Background | 76 |
| abstract_inverted_index.Therefore, | 99 |
| abstract_inverted_index.deformable | 136 |
| abstract_inverted_index.detection, | 69 |
| abstract_inverted_index.especially | 15 |
| abstract_inverted_index.explicitly | 156 |
| abstract_inverted_index.meaningful | 130 |
| abstract_inverted_index.mechanism. | 146 |
| abstract_inverted_index.(CNN)-based | 23 |
| abstract_inverted_index.Transformer | 122 |
| abstract_inverted_index.challenging | 71, 178 |
| abstract_inverted_index.constraints | 160 |
| abstract_inverted_index.development | 11 |
| abstract_inverted_index.effectively | 127 |
| abstract_inverted_index.performance | 175 |
| abstract_inverted_index.small-scale | 133 |
| abstract_inverted_index.transformer | 27, 107, 164 |
| abstract_inverted_index.Experimental | 166 |
| abstract_inverted_index.incorporated | 140 |
| abstract_inverted_index.researchers, | 45 |
| abstract_inverted_index.transformers | 65 |
| abstract_inverted_index.architecture, | 123 |
| abstract_inverted_index.architecture. | 165 |
| abstract_inverted_index.convolutional | 20 |
| abstract_inverted_index.contour-guided | 150 |
| abstract_inverted_index.self-attention | 29, 145 |
| abstract_inverted_index.characteristics | 50 |
| abstract_inverted_index.encoder-decoder | 38 |
| abstract_inverted_index.global-relation | 52 |
| abstract_inverted_index.one-dimensional | 163 |
| abstract_inverted_index.shape-enhancement | 151 |
| abstract_inverted_index.local-sparse-information-aggregation | 106 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 97 |
| corresponding_author_ids | https://openalex.org/A5079551552 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I125839683, https://openalex.org/I50632499 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/14 |
| sustainable_development_goals[0].score | 0.7599999904632568 |
| sustainable_development_goals[0].display_name | Life below water |
| citation_normalized_percentile.value | 0.88745316 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |