A machine learning approach for epileptic seizure detection using BEMD and long short term memory neural networks Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1080/09728600.2025.2559654
Many patients are affected by Epilepsy, a prevalent neurological disorder. They are characterised by aberrant signal discharges on EEG (electroencephalogram). Visual examination of EEG recordings is labor-intensive, subjective, and needs substantial improvement as a non-invasive and low-cost method of identifying epileptic seizures. Hence, it is important to identify aberrant signals from large EEG data automatically, a task where CNNs (Convolution Neural Networks) and DL (deep learning) methods have received much attention. They face problems due to the large dimensionalities of data during training. This research work aims to examine the impacts of dimensionality reductions, feature extractions, and EEG signal identifications for seizure detections. BEMD (Bi-dimensional Empirical Mode Decomposition) has been introduced in this work for dimensionality reductions where features based on statistics, frequencies, and nonlinearity are extracted from sub-bands to collect adequate information on EEG signals. The LSTM (Long-Short Term Memory) model classifies EEG signals. In addition, to improve classification accuracy, BEMD reduces data dimensions resulting in reduced feature space. This work’s proposed algorithm was evaluated on CHBMIT Scalp EEG Database in terms of Accuracy, Specificity, Sensitivity, and F1 scores where outcomes showed better performances when compared to other methods for automatic seizure detections.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1080/09728600.2025.2559654
- OA Status
- gold
- References
- 21
- OpenAlex ID
- https://openalex.org/W4414760024
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414760024Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1080/09728600.2025.2559654Digital Object Identifier
- Title
-
A machine learning approach for epileptic seizure detection using BEMD and long short term memory neural networksWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-02Full publication date if available
- Authors
-
Ranjith Gopalakrishnan, Vijay Franklin John Bosco Martin, Rajesh Kanna PannerList of authors in order
- Landing page
-
https://doi.org/10.1080/09728600.2025.2559654Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1080/09728600.2025.2559654Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
21Number of works referenced by this work
Full payload
| id | https://openalex.org/W4414760024 |
|---|---|
| doi | https://doi.org/10.1080/09728600.2025.2559654 |
| ids.doi | https://doi.org/10.1080/09728600.2025.2559654 |
| ids.openalex | https://openalex.org/W4414760024 |
| fwci | 0.0 |
| type | article |
| title | A machine learning approach for epileptic seizure detection using BEMD and long short term memory neural networks |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 10 |
| biblio.first_page | 1 |
| topics[0].id | https://openalex.org/T10429 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2805 |
| topics[0].subfield.display_name | Cognitive Neuroscience |
| topics[0].display_name | EEG and Brain-Computer Interfaces |
| topics[1].id | https://openalex.org/T12702 |
| topics[1].field.id | https://openalex.org/fields/28 |
| topics[1].field.display_name | Neuroscience |
| topics[1].score | 0.9811999797821045 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2808 |
| topics[1].subfield.display_name | Neurology |
| topics[1].display_name | Brain Tumor Detection and Classification |
| topics[2].id | https://openalex.org/T10320 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9764999747276306 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Neural Networks and Applications |
| is_xpac | False |
| apc_list.value | 1000 |
| apc_list.currency | GBP |
| apc_list.value_usd | 1226 |
| apc_paid.value | 1000 |
| apc_paid.currency | GBP |
| apc_paid.value_usd | 1226 |
| language | en |
| locations[0].id | doi:10.1080/09728600.2025.2559654 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764899362 |
| locations[0].source.issn | 0972-8600, 2543-3474 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 0972-8600 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | AKCE International Journal of Graphs and Combinatorics |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | AKCE International Journal of Graphs and Combinatorics |
| locations[0].landing_page_url | https://doi.org/10.1080/09728600.2025.2559654 |
| locations[1].id | pmh:oai:doaj.org/article:e13242ea8d6447779e3bd8d43d729780 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].source.host_organization_lineage | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | AKCE International Journal of Graphs and Combinatorics, Pp 1-10 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/e13242ea8d6447779e3bd8d43d729780 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5010457076 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0788-8407 |
| authorships[0].author.display_name | Ranjith Gopalakrishnan |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Artificial Intelligence and Data Science, Bannari Amman Institute of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ranjith Gopalakrishnan |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Artificial Intelligence and Data Science, Bannari Amman Institute of Technology |
| authorships[1].author.id | https://openalex.org/A5101856612 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1641-0907 |
| authorships[1].author.display_name | Vijay Franklin John Bosco Martin |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, Erode Sengunthar College of Engineering |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Vijay Franklin John Bosco Martin |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Computer Science and Engineering, Erode Sengunthar College of Engineering |
| authorships[2].author.id | https://openalex.org/A5119819804 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Rajesh Kanna Panner |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, Bannari Amman Institute of Technology |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Rajesh Kanna Panner |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Computer Science and Engineering, Bannari Amman Institute of Technology |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1080/09728600.2025.2559654 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A machine learning approach for epileptic seizure detection using BEMD and long short term memory neural networks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10429 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2805 |
| primary_topic.subfield.display_name | Cognitive Neuroscience |
| primary_topic.display_name | EEG and Brain-Computer Interfaces |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1080/09728600.2025.2559654 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764899362 |
| best_oa_location.source.issn | 0972-8600, 2543-3474 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 0972-8600 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | AKCE International Journal of Graphs and Combinatorics |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | AKCE International Journal of Graphs and Combinatorics |
| best_oa_location.landing_page_url | https://doi.org/10.1080/09728600.2025.2559654 |
| primary_location.id | doi:10.1080/09728600.2025.2559654 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764899362 |
| primary_location.source.issn | 0972-8600, 2543-3474 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 0972-8600 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | AKCE International Journal of Graphs and Combinatorics |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | AKCE International Journal of Graphs and Combinatorics |
| primary_location.landing_page_url | https://doi.org/10.1080/09728600.2025.2559654 |
| publication_date | 2025-10-02 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2807642177, https://openalex.org/W2402770600, https://openalex.org/W2260834210, https://openalex.org/W2003205468, https://openalex.org/W2896459226, https://openalex.org/W2575693046, https://openalex.org/W4283065622, https://openalex.org/W1996183177, https://openalex.org/W2165739295, https://openalex.org/W2793070938, https://openalex.org/W3165430704, https://openalex.org/W3119307757, https://openalex.org/W4285111878, https://openalex.org/W3103969290, https://openalex.org/W2973010960, https://openalex.org/W4323923053, https://openalex.org/W4316037831, https://openalex.org/W4200474188, https://openalex.org/W4226265462, https://openalex.org/W4289656511, https://openalex.org/W4313480291 |
| referenced_works_count | 21 |
| abstract_inverted_index.a | 6, 33, 55 |
| abstract_inverted_index.DL | 63 |
| abstract_inverted_index.F1 | 178 |
| abstract_inverted_index.In | 145 |
| abstract_inverted_index.as | 32 |
| abstract_inverted_index.by | 4, 13 |
| abstract_inverted_index.in | 111, 156, 171 |
| abstract_inverted_index.is | 25, 44 |
| abstract_inverted_index.it | 43 |
| abstract_inverted_index.of | 22, 38, 79, 91, 173 |
| abstract_inverted_index.on | 17, 120, 133, 166 |
| abstract_inverted_index.to | 46, 75, 87, 129, 147, 187 |
| abstract_inverted_index.EEG | 18, 23, 52, 97, 134, 143, 169 |
| abstract_inverted_index.The | 136 |
| abstract_inverted_index.and | 28, 35, 62, 96, 123, 177 |
| abstract_inverted_index.are | 2, 11, 125 |
| abstract_inverted_index.due | 74 |
| abstract_inverted_index.for | 100, 114, 190 |
| abstract_inverted_index.has | 108 |
| abstract_inverted_index.the | 76, 89 |
| abstract_inverted_index.was | 164 |
| abstract_inverted_index.BEMD | 103, 151 |
| abstract_inverted_index.CNNs | 58 |
| abstract_inverted_index.LSTM | 137 |
| abstract_inverted_index.Many | 0 |
| abstract_inverted_index.Mode | 106 |
| abstract_inverted_index.Term | 139 |
| abstract_inverted_index.They | 10, 71 |
| abstract_inverted_index.This | 83, 160 |
| abstract_inverted_index.aims | 86 |
| abstract_inverted_index.been | 109 |
| abstract_inverted_index.data | 53, 80, 153 |
| abstract_inverted_index.face | 72 |
| abstract_inverted_index.from | 50, 127 |
| abstract_inverted_index.have | 67 |
| abstract_inverted_index.much | 69 |
| abstract_inverted_index.task | 56 |
| abstract_inverted_index.this | 112 |
| abstract_inverted_index.when | 185 |
| abstract_inverted_index.work | 85, 113 |
| abstract_inverted_index.(deep | 64 |
| abstract_inverted_index.Scalp | 168 |
| abstract_inverted_index.based | 119 |
| abstract_inverted_index.large | 51, 77 |
| abstract_inverted_index.model | 141 |
| abstract_inverted_index.needs | 29 |
| abstract_inverted_index.other | 188 |
| abstract_inverted_index.terms | 172 |
| abstract_inverted_index.where | 57, 117, 180 |
| abstract_inverted_index.CHBMIT | 167 |
| abstract_inverted_index.Hence, | 42 |
| abstract_inverted_index.Neural | 60 |
| abstract_inverted_index.Visual | 20 |
| abstract_inverted_index.better | 183 |
| abstract_inverted_index.during | 81 |
| abstract_inverted_index.method | 37 |
| abstract_inverted_index.scores | 179 |
| abstract_inverted_index.showed | 182 |
| abstract_inverted_index.signal | 15, 98 |
| abstract_inverted_index.space. | 159 |
| abstract_inverted_index.Memory) | 140 |
| abstract_inverted_index.collect | 130 |
| abstract_inverted_index.examine | 88 |
| abstract_inverted_index.feature | 94, 158 |
| abstract_inverted_index.impacts | 90 |
| abstract_inverted_index.improve | 148 |
| abstract_inverted_index.methods | 66, 189 |
| abstract_inverted_index.reduced | 157 |
| abstract_inverted_index.reduces | 152 |
| abstract_inverted_index.seizure | 101, 192 |
| abstract_inverted_index.signals | 49 |
| abstract_inverted_index.Database | 170 |
| abstract_inverted_index.aberrant | 14, 48 |
| abstract_inverted_index.adequate | 131 |
| abstract_inverted_index.affected | 3 |
| abstract_inverted_index.compared | 186 |
| abstract_inverted_index.features | 118 |
| abstract_inverted_index.identify | 47 |
| abstract_inverted_index.low-cost | 36 |
| abstract_inverted_index.outcomes | 181 |
| abstract_inverted_index.patients | 1 |
| abstract_inverted_index.problems | 73 |
| abstract_inverted_index.proposed | 162 |
| abstract_inverted_index.received | 68 |
| abstract_inverted_index.research | 84 |
| abstract_inverted_index.signals. | 135, 144 |
| abstract_inverted_index.work’s | 161 |
| abstract_inverted_index.Accuracy, | 174 |
| abstract_inverted_index.Empirical | 105 |
| abstract_inverted_index.Epilepsy, | 5 |
| abstract_inverted_index.Networks) | 61 |
| abstract_inverted_index.accuracy, | 150 |
| abstract_inverted_index.addition, | 146 |
| abstract_inverted_index.algorithm | 163 |
| abstract_inverted_index.automatic | 191 |
| abstract_inverted_index.disorder. | 9 |
| abstract_inverted_index.epileptic | 40 |
| abstract_inverted_index.evaluated | 165 |
| abstract_inverted_index.extracted | 126 |
| abstract_inverted_index.important | 45 |
| abstract_inverted_index.learning) | 65 |
| abstract_inverted_index.prevalent | 7 |
| abstract_inverted_index.resulting | 155 |
| abstract_inverted_index.seizures. | 41 |
| abstract_inverted_index.sub-bands | 128 |
| abstract_inverted_index.training. | 82 |
| abstract_inverted_index.attention. | 70 |
| abstract_inverted_index.classifies | 142 |
| abstract_inverted_index.dimensions | 154 |
| abstract_inverted_index.discharges | 16 |
| abstract_inverted_index.introduced | 110 |
| abstract_inverted_index.recordings | 24 |
| abstract_inverted_index.reductions | 116 |
| abstract_inverted_index.(Long-Short | 138 |
| abstract_inverted_index.detections. | 102, 193 |
| abstract_inverted_index.examination | 21 |
| abstract_inverted_index.identifying | 39 |
| abstract_inverted_index.improvement | 31 |
| abstract_inverted_index.information | 132 |
| abstract_inverted_index.reductions, | 93 |
| abstract_inverted_index.statistics, | 121 |
| abstract_inverted_index.subjective, | 27 |
| abstract_inverted_index.substantial | 30 |
| abstract_inverted_index.(Convolution | 59 |
| abstract_inverted_index.Sensitivity, | 176 |
| abstract_inverted_index.Specificity, | 175 |
| abstract_inverted_index.extractions, | 95 |
| abstract_inverted_index.frequencies, | 122 |
| abstract_inverted_index.neurological | 8 |
| abstract_inverted_index.non-invasive | 34 |
| abstract_inverted_index.nonlinearity | 124 |
| abstract_inverted_index.performances | 184 |
| abstract_inverted_index.characterised | 12 |
| abstract_inverted_index.Decomposition) | 107 |
| abstract_inverted_index.automatically, | 54 |
| abstract_inverted_index.classification | 149 |
| abstract_inverted_index.dimensionality | 92, 115 |
| abstract_inverted_index.(Bi-dimensional | 104 |
| abstract_inverted_index.identifications | 99 |
| abstract_inverted_index.dimensionalities | 78 |
| abstract_inverted_index.labor-intensive, | 26 |
| abstract_inverted_index.(electroencephalogram). | 19 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.51380651 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |