A Machine Learning Approach to Assess Differential Item Functioning in Psychometric Questionnaires Using the Elastic Net Regularized Ordinal Logistic Regression in Small Sample Size Groups Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1155/2021/6854477
Assessing differential item functioning (DIF) using the ordinal logistic regression (OLR) model highly depends on the asymptotic sampling distribution of the maximum likelihood (ML) estimators. The ML estimation method, which is often used to estimate the parameters of the OLR model for DIF detection, may be substantially biased with small samples. This study is aimed at proposing a new application of the elastic net regularized OLR model, as a special type of machine learning method, for assessing DIF between two groups with small samples. Accordingly, a simulation study was conducted to compare the powers and type I error rates of the regularized and nonregularized OLR models in detecting DIF under various conditions including moderate and severe magnitudes of DIF (DIF = 0.4 and 0.8), sample size ( N ), sample size ratio ( R ), scale length ( I ), and weighting parameter ( w ). The simulation results revealed that for I = 5 and regardless of R , the elastic net regularized OLR model with w = 0.1, as compared with the nonregularized OLR model, increased the power of detecting moderate uniform DIF (DIF = 0.4) approximately 35% and 21% for N = 100 and 150, respectively. Moreover, for I = 10 and severe uniform DIF (DIF = 0.8), the average power of the elastic net regularized OLR model with 0.03 ≤ w ≤ 0.06, as compared with the nonregularized OLR model, increased approximately 29.3% and 11.2% for N = 100 and 150, respectively. In these cases, the type I error rates of the regularized and nonregularized OLR models were below or close to the nominal level of 0.05. In general, this simulation study showed that the elastic net regularized OLR model outperformed the nonregularized OLR model especially in extremely small sample size groups. Furthermore, the present research provided a guideline and some recommendations for researchers who conduct DIF studies with small sample sizes.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1155/2021/6854477
- https://downloads.hindawi.com/journals/bmri/2021/6854477.pdf
- OA Status
- hybrid
- Cited By
- 6
- References
- 29
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4200090019
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4200090019Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1155/2021/6854477Digital Object Identifier
- Title
-
A Machine Learning Approach to Assess Differential Item Functioning in Psychometric Questionnaires Using the Elastic Net Regularized Ordinal Logistic Regression in Small Sample Size GroupsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-01-01Full publication date if available
- Authors
-
Vahid Ebrahimi, Zahra Bagheri, Zahra Shayan, Peyman JafariList of authors in order
- Landing page
-
https://doi.org/10.1155/2021/6854477Publisher landing page
- PDF URL
-
https://downloads.hindawi.com/journals/bmri/2021/6854477.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://downloads.hindawi.com/journals/bmri/2021/6854477.pdfDirect OA link when available
- Concepts
-
Statistics, Mathematics, Differential item functioning, Elastic net regularization, Estimator, Logistic regression, Sample size determination, Ordered logit, Regression, Item response theory, PsychometricsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
6Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 2, 2023: 1Per-year citation counts (last 5 years)
- References (count)
-
29Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4200090019 |
|---|---|
| doi | https://doi.org/10.1155/2021/6854477 |
| ids.doi | https://doi.org/10.1155/2021/6854477 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/34957307 |
| ids.openalex | https://openalex.org/W4200090019 |
| fwci | 0.60972748 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D003198 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Computer Simulation |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D006801 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Humans |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D016013 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Likelihood Functions |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D016015 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Logistic Models |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D000069550 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Machine Learning |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D015233 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Models, Statistical |
| mesh[6].qualifier_ui | Q000379 |
| mesh[6].descriptor_ui | D011594 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | methods |
| mesh[6].descriptor_name | Psychometrics |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D018401 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Sample Size |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D011795 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Surveys and Questionnaires |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D003198 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Computer Simulation |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D006801 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Humans |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D016013 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Likelihood Functions |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D016015 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Logistic Models |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D000069550 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Machine Learning |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D015233 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Models, Statistical |
| mesh[15].qualifier_ui | Q000379 |
| mesh[15].descriptor_ui | D011594 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | methods |
| mesh[15].descriptor_name | Psychometrics |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D018401 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Sample Size |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D011795 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Surveys and Questionnaires |
| type | article |
| title | A Machine Learning Approach to Assess Differential Item Functioning in Psychometric Questionnaires Using the Elastic Net Regularized Ordinal Logistic Regression in Small Sample Size Groups |
| biblio.issue | 1 |
| biblio.volume | 2021 |
| biblio.last_page | 6854477 |
| biblio.first_page | 6854477 |
| grants[0].funder | https://openalex.org/F4320322545 |
| grants[0].award_id | 21104 |
| grants[0].funder_display_name | Shiraz University of Medical Sciences |
| topics[0].id | https://openalex.org/T13283 |
| topics[0].field.id | https://openalex.org/fields/32 |
| topics[0].field.display_name | Psychology |
| topics[0].score | 0.9695000052452087 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3205 |
| topics[0].subfield.display_name | Experimental and Cognitive Psychology |
| topics[0].display_name | Mental Health Research Topics |
| topics[1].id | https://openalex.org/T13748 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9546999931335449 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1705 |
| topics[1].subfield.display_name | Computer Networks and Communications |
| topics[1].display_name | Advanced Statistical Modeling Techniques |
| topics[2].id | https://openalex.org/T10467 |
| topics[2].field.id | https://openalex.org/fields/18 |
| topics[2].field.display_name | Decision Sciences |
| topics[2].score | 0.9419000148773193 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1803 |
| topics[2].subfield.display_name | Management Science and Operations Research |
| topics[2].display_name | Psychometric Methodologies and Testing |
| funders[0].id | https://openalex.org/F4320322545 |
| funders[0].ror | https://ror.org/01n3s4692 |
| funders[0].display_name | Shiraz University of Medical Sciences |
| is_xpac | False |
| apc_list.value | 2400 |
| apc_list.currency | USD |
| apc_list.value_usd | 2400 |
| apc_paid.value | 2400 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2400 |
| concepts[0].id | https://openalex.org/C105795698 |
| concepts[0].level | 1 |
| concepts[0].score | 0.7747148871421814 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[0].display_name | Statistics |
| concepts[1].id | https://openalex.org/C33923547 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7180348038673401 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[1].display_name | Mathematics |
| concepts[2].id | https://openalex.org/C181447626 |
| concepts[2].level | 4 |
| concepts[2].score | 0.6584168672561646 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1224359 |
| concepts[2].display_name | Differential item functioning |
| concepts[3].id | https://openalex.org/C203868755 |
| concepts[3].level | 3 |
| concepts[3].score | 0.6497709155082703 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5353562 |
| concepts[3].display_name | Elastic net regularization |
| concepts[4].id | https://openalex.org/C185429906 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5931785106658936 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1130160 |
| concepts[4].display_name | Estimator |
| concepts[5].id | https://openalex.org/C151956035 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5921938419342041 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1132755 |
| concepts[5].display_name | Logistic regression |
| concepts[6].id | https://openalex.org/C129848803 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5307191610336304 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2564360 |
| concepts[6].display_name | Sample size determination |
| concepts[7].id | https://openalex.org/C87227347 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5175628066062927 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7100713 |
| concepts[7].display_name | Ordered logit |
| concepts[8].id | https://openalex.org/C83546350 |
| concepts[8].level | 2 |
| concepts[8].score | 0.3697550296783447 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1139051 |
| concepts[8].display_name | Regression |
| concepts[9].id | https://openalex.org/C19875794 |
| concepts[9].level | 3 |
| concepts[9].score | 0.32116425037384033 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1207340 |
| concepts[9].display_name | Item response theory |
| concepts[10].id | https://openalex.org/C171606756 |
| concepts[10].level | 2 |
| concepts[10].score | 0.15247511863708496 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q506132 |
| concepts[10].display_name | Psychometrics |
| keywords[0].id | https://openalex.org/keywords/statistics |
| keywords[0].score | 0.7747148871421814 |
| keywords[0].display_name | Statistics |
| keywords[1].id | https://openalex.org/keywords/mathematics |
| keywords[1].score | 0.7180348038673401 |
| keywords[1].display_name | Mathematics |
| keywords[2].id | https://openalex.org/keywords/differential-item-functioning |
| keywords[2].score | 0.6584168672561646 |
| keywords[2].display_name | Differential item functioning |
| keywords[3].id | https://openalex.org/keywords/elastic-net-regularization |
| keywords[3].score | 0.6497709155082703 |
| keywords[3].display_name | Elastic net regularization |
| keywords[4].id | https://openalex.org/keywords/estimator |
| keywords[4].score | 0.5931785106658936 |
| keywords[4].display_name | Estimator |
| keywords[5].id | https://openalex.org/keywords/logistic-regression |
| keywords[5].score | 0.5921938419342041 |
| keywords[5].display_name | Logistic regression |
| keywords[6].id | https://openalex.org/keywords/sample-size-determination |
| keywords[6].score | 0.5307191610336304 |
| keywords[6].display_name | Sample size determination |
| keywords[7].id | https://openalex.org/keywords/ordered-logit |
| keywords[7].score | 0.5175628066062927 |
| keywords[7].display_name | Ordered logit |
| keywords[8].id | https://openalex.org/keywords/regression |
| keywords[8].score | 0.3697550296783447 |
| keywords[8].display_name | Regression |
| keywords[9].id | https://openalex.org/keywords/item-response-theory |
| keywords[9].score | 0.32116425037384033 |
| keywords[9].display_name | Item response theory |
| keywords[10].id | https://openalex.org/keywords/psychometrics |
| keywords[10].score | 0.15247511863708496 |
| keywords[10].display_name | Psychometrics |
| language | en |
| locations[0].id | doi:10.1155/2021/6854477 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S1010394304 |
| locations[0].source.issn | 2314-6133, 2314-6141 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2314-6133 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | BioMed Research International |
| locations[0].source.host_organization | https://openalex.org/P4310319869 |
| locations[0].source.host_organization_name | Hindawi Publishing Corporation |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319869 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://downloads.hindawi.com/journals/bmri/2021/6854477.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | BioMed Research International |
| locations[0].landing_page_url | https://doi.org/10.1155/2021/6854477 |
| locations[1].id | pmid:34957307 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | BioMed research international |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/34957307 |
| locations[2].id | pmh:oai:doaj.org/article:b774fee4611d4d5fabd9f8e100e5103c |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].source.host_organization_lineage | |
| locations[2].license | cc-by-sa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | BioMed Research International, Vol 2021 (2021) |
| locations[2].landing_page_url | https://doaj.org/article/b774fee4611d4d5fabd9f8e100e5103c |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:8695002 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Biomed Res Int |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/8695002 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5022655343 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4203-3957 |
| authorships[0].author.display_name | Vahid Ebrahimi |
| authorships[0].countries | IR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I194604659 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Biostatistics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran |
| authorships[0].institutions[0].id | https://openalex.org/I194604659 |
| authorships[0].institutions[0].ror | https://ror.org/01n3s4692 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I194604659 |
| authorships[0].institutions[0].country_code | IR |
| authorships[0].institutions[0].display_name | Shiraz University of Medical Sciences |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Vahid Ebrahimi |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Biostatistics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran |
| authorships[1].author.id | https://openalex.org/A5043934108 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6239-2925 |
| authorships[1].author.display_name | Zahra Bagheri |
| authorships[1].countries | IR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I194604659 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Biostatistics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran |
| authorships[1].institutions[0].id | https://openalex.org/I194604659 |
| authorships[1].institutions[0].ror | https://ror.org/01n3s4692 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I194604659 |
| authorships[1].institutions[0].country_code | IR |
| authorships[1].institutions[0].display_name | Shiraz University of Medical Sciences |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zahra Bagheri |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Biostatistics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran |
| authorships[2].author.id | https://openalex.org/A5021324244 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3172-6862 |
| authorships[2].author.display_name | Zahra Shayan |
| authorships[2].countries | IR |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I194604659 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Biostatistics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran |
| authorships[2].institutions[0].id | https://openalex.org/I194604659 |
| authorships[2].institutions[0].ror | https://ror.org/01n3s4692 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I194604659 |
| authorships[2].institutions[0].country_code | IR |
| authorships[2].institutions[0].display_name | Shiraz University of Medical Sciences |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zahra Shayan |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Biostatistics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran |
| authorships[3].author.id | https://openalex.org/A5030494708 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6766-1343 |
| authorships[3].author.display_name | Peyman Jafari |
| authorships[3].countries | IR |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I194604659 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Biostatistics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran |
| authorships[3].institutions[0].id | https://openalex.org/I194604659 |
| authorships[3].institutions[0].ror | https://ror.org/01n3s4692 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I194604659 |
| authorships[3].institutions[0].country_code | IR |
| authorships[3].institutions[0].display_name | Shiraz University of Medical Sciences |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Peyman Jafari |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | Department of Biostatistics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://downloads.hindawi.com/journals/bmri/2021/6854477.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Machine Learning Approach to Assess Differential Item Functioning in Psychometric Questionnaires Using the Elastic Net Regularized Ordinal Logistic Regression in Small Sample Size Groups |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T13283 |
| primary_topic.field.id | https://openalex.org/fields/32 |
| primary_topic.field.display_name | Psychology |
| primary_topic.score | 0.9695000052452087 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3205 |
| primary_topic.subfield.display_name | Experimental and Cognitive Psychology |
| primary_topic.display_name | Mental Health Research Topics |
| related_works | https://openalex.org/W1968852390, https://openalex.org/W4234875053, https://openalex.org/W2186771857, https://openalex.org/W2370894755, https://openalex.org/W1957521962, https://openalex.org/W2799539349, https://openalex.org/W2030595022, https://openalex.org/W2918541347, https://openalex.org/W2088715419, https://openalex.org/W2000333604 |
| cited_by_count | 6 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1155/2021/6854477 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S1010394304 |
| best_oa_location.source.issn | 2314-6133, 2314-6141 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2314-6133 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | BioMed Research International |
| best_oa_location.source.host_organization | https://openalex.org/P4310319869 |
| best_oa_location.source.host_organization_name | Hindawi Publishing Corporation |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319869 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://downloads.hindawi.com/journals/bmri/2021/6854477.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | BioMed Research International |
| best_oa_location.landing_page_url | https://doi.org/10.1155/2021/6854477 |
| primary_location.id | doi:10.1155/2021/6854477 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S1010394304 |
| primary_location.source.issn | 2314-6133, 2314-6141 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2314-6133 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | BioMed Research International |
| primary_location.source.host_organization | https://openalex.org/P4310319869 |
| primary_location.source.host_organization_name | Hindawi Publishing Corporation |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319869 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://downloads.hindawi.com/journals/bmri/2021/6854477.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | BioMed Research International |
| primary_location.landing_page_url | https://doi.org/10.1155/2021/6854477 |
| publication_date | 2021-01-01 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2096160735, https://openalex.org/W2428223156, https://openalex.org/W2125408868, https://openalex.org/W2003336625, https://openalex.org/W2522876519, https://openalex.org/W2755323618, https://openalex.org/W1911333099, https://openalex.org/W2147633143, https://openalex.org/W2977345480, https://openalex.org/W2162420979, https://openalex.org/W2078129874, https://openalex.org/W2106393550, https://openalex.org/W2017441956, https://openalex.org/W3007017972, https://openalex.org/W2122825543, https://openalex.org/W2135046866, https://openalex.org/W2999495863, https://openalex.org/W2102934898, https://openalex.org/W1964476636, https://openalex.org/W615789002, https://openalex.org/W2132762199, https://openalex.org/W2004278023, https://openalex.org/W3158659496, https://openalex.org/W2921856691, https://openalex.org/W2302405038, https://openalex.org/W2148309359, https://openalex.org/W2012236574, https://openalex.org/W3197672892, https://openalex.org/W2626435312 |
| referenced_works_count | 29 |
| abstract_inverted_index.( | 126, 132, 137, 143 |
| abstract_inverted_index., | 159 |
| abstract_inverted_index.5 | 154 |
| abstract_inverted_index.= | 120, 153, 168, 186, 194, 202, 209, 241 |
| abstract_inverted_index.I | 96, 138, 152, 201, 251 |
| abstract_inverted_index.N | 127, 193, 240 |
| abstract_inverted_index.R | 133, 158 |
| abstract_inverted_index.a | 57, 68, 85, 301 |
| abstract_inverted_index.w | 144, 167, 224 |
| abstract_inverted_index.), | 128, 134, 139 |
| abstract_inverted_index.). | 145 |
| abstract_inverted_index.10 | 203 |
| abstract_inverted_index.In | 246, 271 |
| abstract_inverted_index.ML | 26 |
| abstract_inverted_index.as | 67, 170, 227 |
| abstract_inverted_index.at | 55 |
| abstract_inverted_index.be | 45 |
| abstract_inverted_index.in | 106, 290 |
| abstract_inverted_index.is | 30, 53 |
| abstract_inverted_index.of | 19, 37, 60, 71, 99, 117, 157, 180, 214, 254, 269 |
| abstract_inverted_index.on | 14 |
| abstract_inverted_index.or | 263 |
| abstract_inverted_index.to | 33, 90, 265 |
| abstract_inverted_index.0.4 | 121 |
| abstract_inverted_index.100 | 195, 242 |
| abstract_inverted_index.21% | 191 |
| abstract_inverted_index.35% | 189 |
| abstract_inverted_index.DIF | 42, 77, 108, 118, 184, 207, 310 |
| abstract_inverted_index.OLR | 39, 65, 104, 164, 175, 219, 232, 259, 282, 287 |
| abstract_inverted_index.The | 25, 146 |
| abstract_inverted_index.and | 94, 102, 114, 122, 140, 155, 190, 196, 204, 237, 243, 257, 303 |
| abstract_inverted_index.for | 41, 75, 151, 192, 200, 239, 306 |
| abstract_inverted_index.may | 44 |
| abstract_inverted_index.net | 63, 162, 217, 280 |
| abstract_inverted_index.new | 58 |
| abstract_inverted_index.the | 6, 15, 20, 35, 38, 61, 92, 100, 160, 173, 178, 211, 215, 230, 249, 255, 266, 278, 285, 297 |
| abstract_inverted_index.two | 79 |
| abstract_inverted_index.was | 88 |
| abstract_inverted_index.who | 308 |
| abstract_inverted_index.≤ | 223, 225 |
| abstract_inverted_index.(DIF | 119, 185, 208 |
| abstract_inverted_index.(ML) | 23 |
| abstract_inverted_index.0.03 | 222 |
| abstract_inverted_index.0.1, | 169 |
| abstract_inverted_index.0.4) | 187 |
| abstract_inverted_index.150, | 197, 244 |
| abstract_inverted_index.This | 51 |
| abstract_inverted_index.item | 2 |
| abstract_inverted_index.size | 125, 130, 294 |
| abstract_inverted_index.some | 304 |
| abstract_inverted_index.that | 150, 277 |
| abstract_inverted_index.this | 273 |
| abstract_inverted_index.type | 70, 95, 250 |
| abstract_inverted_index.used | 32 |
| abstract_inverted_index.were | 261 |
| abstract_inverted_index.with | 48, 81, 166, 172, 221, 229, 312 |
| abstract_inverted_index.(DIF) | 4 |
| abstract_inverted_index.(OLR) | 10 |
| abstract_inverted_index.0.05. | 270 |
| abstract_inverted_index.0.06, | 226 |
| abstract_inverted_index.0.8), | 123, 210 |
| abstract_inverted_index.11.2% | 238 |
| abstract_inverted_index.29.3% | 236 |
| abstract_inverted_index.aimed | 54 |
| abstract_inverted_index.below | 262 |
| abstract_inverted_index.close | 264 |
| abstract_inverted_index.error | 97, 252 |
| abstract_inverted_index.level | 268 |
| abstract_inverted_index.model | 11, 40, 165, 220, 283, 288 |
| abstract_inverted_index.often | 31 |
| abstract_inverted_index.power | 179, 213 |
| abstract_inverted_index.rates | 98, 253 |
| abstract_inverted_index.ratio | 131 |
| abstract_inverted_index.scale | 135 |
| abstract_inverted_index.small | 49, 82, 292, 313 |
| abstract_inverted_index.study | 52, 87, 275 |
| abstract_inverted_index.these | 247 |
| abstract_inverted_index.under | 109 |
| abstract_inverted_index.using | 5 |
| abstract_inverted_index.which | 29 |
| abstract_inverted_index.biased | 47 |
| abstract_inverted_index.cases, | 248 |
| abstract_inverted_index.groups | 80 |
| abstract_inverted_index.highly | 12 |
| abstract_inverted_index.length | 136 |
| abstract_inverted_index.model, | 66, 176, 233 |
| abstract_inverted_index.models | 105, 260 |
| abstract_inverted_index.powers | 93 |
| abstract_inverted_index.sample | 124, 129, 293, 314 |
| abstract_inverted_index.severe | 115, 205 |
| abstract_inverted_index.showed | 276 |
| abstract_inverted_index.sizes. | 315 |
| abstract_inverted_index.average | 212 |
| abstract_inverted_index.between | 78 |
| abstract_inverted_index.compare | 91 |
| abstract_inverted_index.conduct | 309 |
| abstract_inverted_index.depends | 13 |
| abstract_inverted_index.elastic | 62, 161, 216, 279 |
| abstract_inverted_index.groups. | 295 |
| abstract_inverted_index.machine | 72 |
| abstract_inverted_index.maximum | 21 |
| abstract_inverted_index.method, | 28, 74 |
| abstract_inverted_index.nominal | 267 |
| abstract_inverted_index.ordinal | 7 |
| abstract_inverted_index.present | 298 |
| abstract_inverted_index.results | 148 |
| abstract_inverted_index.special | 69 |
| abstract_inverted_index.studies | 311 |
| abstract_inverted_index.uniform | 183, 206 |
| abstract_inverted_index.various | 110 |
| abstract_inverted_index.compared | 171, 228 |
| abstract_inverted_index.estimate | 34 |
| abstract_inverted_index.general, | 272 |
| abstract_inverted_index.learning | 73 |
| abstract_inverted_index.logistic | 8 |
| abstract_inverted_index.moderate | 113, 182 |
| abstract_inverted_index.provided | 300 |
| abstract_inverted_index.research | 299 |
| abstract_inverted_index.revealed | 149 |
| abstract_inverted_index.samples. | 50, 83 |
| abstract_inverted_index.sampling | 17 |
| abstract_inverted_index.Assessing | 0 |
| abstract_inverted_index.Moreover, | 199 |
| abstract_inverted_index.assessing | 76 |
| abstract_inverted_index.conducted | 89 |
| abstract_inverted_index.detecting | 107, 181 |
| abstract_inverted_index.extremely | 291 |
| abstract_inverted_index.guideline | 302 |
| abstract_inverted_index.including | 112 |
| abstract_inverted_index.increased | 177, 234 |
| abstract_inverted_index.parameter | 142 |
| abstract_inverted_index.proposing | 56 |
| abstract_inverted_index.weighting | 141 |
| abstract_inverted_index.asymptotic | 16 |
| abstract_inverted_index.conditions | 111 |
| abstract_inverted_index.detection, | 43 |
| abstract_inverted_index.especially | 289 |
| abstract_inverted_index.estimation | 27 |
| abstract_inverted_index.likelihood | 22 |
| abstract_inverted_index.magnitudes | 116 |
| abstract_inverted_index.parameters | 36 |
| abstract_inverted_index.regardless | 156 |
| abstract_inverted_index.regression | 9 |
| abstract_inverted_index.simulation | 86, 147, 274 |
| abstract_inverted_index.application | 59 |
| abstract_inverted_index.estimators. | 24 |
| abstract_inverted_index.functioning | 3 |
| abstract_inverted_index.regularized | 64, 101, 163, 218, 256, 281 |
| abstract_inverted_index.researchers | 307 |
| abstract_inverted_index.Accordingly, | 84 |
| abstract_inverted_index.Furthermore, | 296 |
| abstract_inverted_index.differential | 1 |
| abstract_inverted_index.distribution | 18 |
| abstract_inverted_index.outperformed | 284 |
| abstract_inverted_index.approximately | 188, 235 |
| abstract_inverted_index.respectively. | 198, 245 |
| abstract_inverted_index.substantially | 46 |
| abstract_inverted_index.nonregularized | 103, 174, 231, 258, 286 |
| abstract_inverted_index.recommendations | 305 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5030494708 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I194604659 |
| citation_normalized_percentile.value | 0.69056267 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |