A machine-learning approach to weight approximation for a new family of orthogonal polynomials Article Swipe
Varun Kumar
,
K. Laxminarayanamma
,
Abhishek K. Singh
,
Brajesh Kumar Shukla
,
Saiful R. Mondal
·
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3934/math.2025843
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3934/math.2025843
Related Topics
Concepts
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3934/math.2025843
- OA Status
- gold
- References
- 54
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4413338865
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4413338865Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3934/math.2025843Digital Object Identifier
- Title
-
A machine-learning approach to weight approximation for a new family of orthogonal polynomialsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-01Full publication date if available
- Authors
-
Varun Kumar, K. Laxminarayanamma, Abhishek K. Singh, Brajesh Kumar Shukla, Saiful R. MondalList of authors in order
- Landing page
-
https://doi.org/10.3934/math.2025843Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.3934/math.2025843Direct OA link when available
- Concepts
-
Orthogonal polynomials, Discrete orthogonal polynomials, Artificial intelligence, Computer science, Mathematics, Algebra over a field, Combinatorics, Pure mathematicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
54Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4413338865 |
|---|---|
| doi | https://doi.org/10.3934/math.2025843 |
| ids.doi | https://doi.org/10.3934/math.2025843 |
| ids.openalex | https://openalex.org/W4413338865 |
| fwci | 0.0 |
| type | article |
| title | A machine-learning approach to weight approximation for a new family of orthogonal polynomials |
| biblio.issue | 8 |
| biblio.volume | 10 |
| biblio.last_page | 18886 |
| biblio.first_page | 18861 |
| topics[0].id | https://openalex.org/T11191 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9987999796867371 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2604 |
| topics[0].subfield.display_name | Applied Mathematics |
| topics[0].display_name | Mathematical functions and polynomials |
| topics[1].id | https://openalex.org/T12661 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9909999966621399 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2612 |
| topics[1].subfield.display_name | Numerical Analysis |
| topics[1].display_name | Iterative Methods for Nonlinear Equations |
| topics[2].id | https://openalex.org/T10792 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9815999865531921 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1703 |
| topics[2].subfield.display_name | Computational Theory and Mathematics |
| topics[2].display_name | Matrix Theory and Algorithms |
| is_xpac | False |
| apc_list.value | 1200 |
| apc_list.currency | USD |
| apc_list.value_usd | 1200 |
| apc_paid.value | 1200 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1200 |
| concepts[0].id | https://openalex.org/C10628310 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6890310049057007 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q619458 |
| concepts[0].display_name | Orthogonal polynomials |
| concepts[1].id | https://openalex.org/C52537462 |
| concepts[1].level | 3 |
| concepts[1].score | 0.4485425651073456 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q5282055 |
| concepts[1].display_name | Discrete orthogonal polynomials |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.445125550031662 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.42384666204452515 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C33923547 |
| concepts[4].level | 0 |
| concepts[4].score | 0.4095078706741333 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[4].display_name | Mathematics |
| concepts[5].id | https://openalex.org/C136119220 |
| concepts[5].level | 2 |
| concepts[5].score | 0.39345329999923706 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1000660 |
| concepts[5].display_name | Algebra over a field |
| concepts[6].id | https://openalex.org/C114614502 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3214240074157715 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[6].display_name | Combinatorics |
| concepts[7].id | https://openalex.org/C202444582 |
| concepts[7].level | 1 |
| concepts[7].score | 0.25792109966278076 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[7].display_name | Pure mathematics |
| keywords[0].id | https://openalex.org/keywords/orthogonal-polynomials |
| keywords[0].score | 0.6890310049057007 |
| keywords[0].display_name | Orthogonal polynomials |
| keywords[1].id | https://openalex.org/keywords/discrete-orthogonal-polynomials |
| keywords[1].score | 0.4485425651073456 |
| keywords[1].display_name | Discrete orthogonal polynomials |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.445125550031662 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.42384666204452515 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/mathematics |
| keywords[4].score | 0.4095078706741333 |
| keywords[4].display_name | Mathematics |
| keywords[5].id | https://openalex.org/keywords/algebra-over-a-field |
| keywords[5].score | 0.39345329999923706 |
| keywords[5].display_name | Algebra over a field |
| keywords[6].id | https://openalex.org/keywords/combinatorics |
| keywords[6].score | 0.3214240074157715 |
| keywords[6].display_name | Combinatorics |
| keywords[7].id | https://openalex.org/keywords/pure-mathematics |
| keywords[7].score | 0.25792109966278076 |
| keywords[7].display_name | Pure mathematics |
| language | en |
| locations[0].id | doi:10.3934/math.2025843 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210179087 |
| locations[0].source.issn | 2473-6988 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2473-6988 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | AIMS Mathematics |
| locations[0].source.host_organization | https://openalex.org/P4310315844 |
| locations[0].source.host_organization_name | American Institute of Mathematical Sciences |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310315844 |
| locations[0].source.host_organization_lineage_names | American Institute of Mathematical Sciences |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | AIMS Mathematics |
| locations[0].landing_page_url | https://doi.org/10.3934/math.2025843 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5042283016 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7949-3201 |
| authorships[0].author.display_name | Varun Kumar |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Varun Kumar |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5012460247 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | K. Laxminarayanamma |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | K. Laxminarayanamma |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5042366939 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7631-6744 |
| authorships[2].author.display_name | Abhishek K. Singh |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Abhishek Kumar Singh |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5043805957 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-6641-6701 |
| authorships[3].author.display_name | Brajesh Kumar Shukla |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Brajesh Shukla |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5005728762 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-4540-1601 |
| authorships[4].author.display_name | Saiful R. Mondal |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Saiful Rahman Mondal |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.3934/math.2025843 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A machine-learning approach to weight approximation for a new family of orthogonal polynomials |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11191 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9987999796867371 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2604 |
| primary_topic.subfield.display_name | Applied Mathematics |
| primary_topic.display_name | Mathematical functions and polynomials |
| related_works | https://openalex.org/W2012860697, https://openalex.org/W4286909400, https://openalex.org/W3125460591, https://openalex.org/W2081607056, https://openalex.org/W2168893271, https://openalex.org/W3011242877, https://openalex.org/W3147630167, https://openalex.org/W4235578599, https://openalex.org/W3148568540, https://openalex.org/W34992575 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.3934/math.2025843 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210179087 |
| best_oa_location.source.issn | 2473-6988 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2473-6988 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | AIMS Mathematics |
| best_oa_location.source.host_organization | https://openalex.org/P4310315844 |
| best_oa_location.source.host_organization_name | American Institute of Mathematical Sciences |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310315844 |
| best_oa_location.source.host_organization_lineage_names | American Institute of Mathematical Sciences |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | AIMS Mathematics |
| best_oa_location.landing_page_url | https://doi.org/10.3934/math.2025843 |
| primary_location.id | doi:10.3934/math.2025843 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210179087 |
| primary_location.source.issn | 2473-6988 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2473-6988 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | AIMS Mathematics |
| primary_location.source.host_organization | https://openalex.org/P4310315844 |
| primary_location.source.host_organization_name | American Institute of Mathematical Sciences |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310315844 |
| primary_location.source.host_organization_lineage_names | American Institute of Mathematical Sciences |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | AIMS Mathematics |
| primary_location.landing_page_url | https://doi.org/10.3934/math.2025843 |
| publication_date | 2025-01-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W60675102, https://openalex.org/W2595292363, https://openalex.org/W2043723926, https://openalex.org/W2788141511, https://openalex.org/W3175924961, https://openalex.org/W2809621841, https://openalex.org/W4396646555, https://openalex.org/W4401316281, https://openalex.org/W4407739912, https://openalex.org/W4407098091, https://openalex.org/W4391753830, https://openalex.org/W4400581012, https://openalex.org/W4409293012, https://openalex.org/W1968526563, https://openalex.org/W1997526144, https://openalex.org/W2144737555, https://openalex.org/W2326013413, https://openalex.org/W2002999204, https://openalex.org/W4283219016, https://openalex.org/W3208872946, https://openalex.org/W2501682030, https://openalex.org/W2996224010, https://openalex.org/W2971907692, https://openalex.org/W2518141605, https://openalex.org/W4319786698, https://openalex.org/W2883361974, https://openalex.org/W4392900394, https://openalex.org/W2800912248, https://openalex.org/W2963385188, https://openalex.org/W3197153568, https://openalex.org/W3178337961, https://openalex.org/W4406410544, https://openalex.org/W4405705271, https://openalex.org/W2041318298, https://openalex.org/W4309001861, https://openalex.org/W3094317725, https://openalex.org/W2043352761, https://openalex.org/W2089619198, https://openalex.org/W2022271601, https://openalex.org/W4285805512, https://openalex.org/W2053135339, https://openalex.org/W4308013155, https://openalex.org/W2086010588, https://openalex.org/W4408919538, https://openalex.org/W2162232298, https://openalex.org/W2786699503, https://openalex.org/W4391272960, https://openalex.org/W4410096295, https://openalex.org/W3103662111, https://openalex.org/W3098484407, https://openalex.org/W3103170102, https://openalex.org/W3105071405, https://openalex.org/W3105322656, https://openalex.org/W3103184604 |
| referenced_works_count | 54 |
| abstract_inverted_index | |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.46495294 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |