A MapReduce solution for associative classification of big data Article Swipe
Alessio Bechini
,
Francesco Marcelloni
,
Armando Segatori
·
YOU?
·
· 2015
· Open Access
·
· DOI: https://doi.org/10.1016/j.ins.2015.10.041
YOU?
·
· 2015
· Open Access
·
· DOI: https://doi.org/10.1016/j.ins.2015.10.041
Related Topics
Concepts
Computer science
Pruning
Scalability
Speedup
Big data
Scheme (mathematics)
Association rule learning
Associative property
Process (computing)
Computation
Artificial intelligence
Set (abstract data type)
Machine learning
Data mining
Content-addressable memory
High memory
Algorithm
Artificial neural network
Database
Parallel computing
Agronomy
Biology
Programming language
Operating system
Pure mathematics
Mathematical analysis
Mathematics
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.ins.2015.10.041
- OA Status
- green
- Cited By
- 107
- References
- 99
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2145611520
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2145611520Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.ins.2015.10.041Digital Object Identifier
- Title
-
A MapReduce solution for associative classification of big dataWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2015Year of publication
- Publication date
-
2015-11-04Full publication date if available
- Authors
-
Alessio Bechini, Francesco Marcelloni, Armando SegatoriList of authors in order
- Landing page
-
https://doi.org/10.1016/j.ins.2015.10.041Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://hdl.handle.net/11568/799448Direct OA link when available
- Concepts
-
Computer science, Pruning, Scalability, Speedup, Big data, Scheme (mathematics), Association rule learning, Associative property, Process (computing), Computation, Artificial intelligence, Set (abstract data type), Machine learning, Data mining, Content-addressable memory, High memory, Algorithm, Artificial neural network, Database, Parallel computing, Agronomy, Biology, Programming language, Operating system, Pure mathematics, Mathematical analysis, MathematicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
107Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 3, 2023: 5, 2022: 4, 2021: 7Per-year citation counts (last 5 years)
- References (count)
-
99Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2145611520 |
|---|---|
| doi | https://doi.org/10.1016/j.ins.2015.10.041 |
| ids.doi | https://doi.org/10.1016/j.ins.2015.10.041 |
| ids.mag | 2145611520 |
| ids.openalex | https://openalex.org/W2145611520 |
| fwci | 39.50905823 |
| type | article |
| title | A MapReduce solution for associative classification of big data |
| biblio.issue | |
| biblio.volume | 332 |
| biblio.last_page | 55 |
| biblio.first_page | 33 |
| topics[0].id | https://openalex.org/T10538 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1710 |
| topics[0].subfield.display_name | Information Systems |
| topics[0].display_name | Data Mining Algorithms and Applications |
| topics[1].id | https://openalex.org/T11106 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9904000163078308 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1711 |
| topics[1].subfield.display_name | Signal Processing |
| topics[1].display_name | Data Management and Algorithms |
| topics[2].id | https://openalex.org/T11719 |
| topics[2].field.id | https://openalex.org/fields/18 |
| topics[2].field.display_name | Decision Sciences |
| topics[2].score | 0.9898999929428101 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1803 |
| topics[2].subfield.display_name | Management Science and Operations Research |
| topics[2].display_name | Data Quality and Management |
| is_xpac | False |
| apc_list.value | 3330 |
| apc_list.currency | USD |
| apc_list.value_usd | 3330 |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8736128211021423 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C108010975 |
| concepts[1].level | 2 |
| concepts[1].score | 0.8066939115524292 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q500094 |
| concepts[1].display_name | Pruning |
| concepts[2].id | https://openalex.org/C48044578 |
| concepts[2].level | 2 |
| concepts[2].score | 0.8054956793785095 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q727490 |
| concepts[2].display_name | Scalability |
| concepts[3].id | https://openalex.org/C68339613 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6830774545669556 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1549489 |
| concepts[3].display_name | Speedup |
| concepts[4].id | https://openalex.org/C75684735 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6497361660003662 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q858810 |
| concepts[4].display_name | Big data |
| concepts[5].id | https://openalex.org/C77618280 |
| concepts[5].level | 2 |
| concepts[5].score | 0.63932204246521 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1155772 |
| concepts[5].display_name | Scheme (mathematics) |
| concepts[6].id | https://openalex.org/C193524817 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5998569130897522 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q386780 |
| concepts[6].display_name | Association rule learning |
| concepts[7].id | https://openalex.org/C159423971 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5567540526390076 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q177251 |
| concepts[7].display_name | Associative property |
| concepts[8].id | https://openalex.org/C98045186 |
| concepts[8].level | 2 |
| concepts[8].score | 0.504496693611145 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[8].display_name | Process (computing) |
| concepts[9].id | https://openalex.org/C45374587 |
| concepts[9].level | 2 |
| concepts[9].score | 0.5013175010681152 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q12525525 |
| concepts[9].display_name | Computation |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.49525871872901917 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| concepts[11].id | https://openalex.org/C177264268 |
| concepts[11].level | 2 |
| concepts[11].score | 0.47763195633888245 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[11].display_name | Set (abstract data type) |
| concepts[12].id | https://openalex.org/C119857082 |
| concepts[12].level | 1 |
| concepts[12].score | 0.4670015573501587 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[12].display_name | Machine learning |
| concepts[13].id | https://openalex.org/C124101348 |
| concepts[13].level | 1 |
| concepts[13].score | 0.4480232000350952 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[13].display_name | Data mining |
| concepts[14].id | https://openalex.org/C53442348 |
| concepts[14].level | 3 |
| concepts[14].score | 0.4421577453613281 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q745101 |
| concepts[14].display_name | Content-addressable memory |
| concepts[15].id | https://openalex.org/C2781357197 |
| concepts[15].level | 2 |
| concepts[15].score | 0.4199480712413788 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q5757597 |
| concepts[15].display_name | High memory |
| concepts[16].id | https://openalex.org/C11413529 |
| concepts[16].level | 1 |
| concepts[16].score | 0.2335711419582367 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[16].display_name | Algorithm |
| concepts[17].id | https://openalex.org/C50644808 |
| concepts[17].level | 2 |
| concepts[17].score | 0.19735834002494812 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[17].display_name | Artificial neural network |
| concepts[18].id | https://openalex.org/C77088390 |
| concepts[18].level | 1 |
| concepts[18].score | 0.19332563877105713 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[18].display_name | Database |
| concepts[19].id | https://openalex.org/C173608175 |
| concepts[19].level | 1 |
| concepts[19].score | 0.18959465622901917 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q232661 |
| concepts[19].display_name | Parallel computing |
| concepts[20].id | https://openalex.org/C6557445 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q173113 |
| concepts[20].display_name | Agronomy |
| concepts[21].id | https://openalex.org/C86803240 |
| concepts[21].level | 0 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[21].display_name | Biology |
| concepts[22].id | https://openalex.org/C199360897 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[22].display_name | Programming language |
| concepts[23].id | https://openalex.org/C111919701 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[23].display_name | Operating system |
| concepts[24].id | https://openalex.org/C202444582 |
| concepts[24].level | 1 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[24].display_name | Pure mathematics |
| concepts[25].id | https://openalex.org/C134306372 |
| concepts[25].level | 1 |
| concepts[25].score | 0.0 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[25].display_name | Mathematical analysis |
| concepts[26].id | https://openalex.org/C33923547 |
| concepts[26].level | 0 |
| concepts[26].score | 0.0 |
| concepts[26].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[26].display_name | Mathematics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8736128211021423 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/pruning |
| keywords[1].score | 0.8066939115524292 |
| keywords[1].display_name | Pruning |
| keywords[2].id | https://openalex.org/keywords/scalability |
| keywords[2].score | 0.8054956793785095 |
| keywords[2].display_name | Scalability |
| keywords[3].id | https://openalex.org/keywords/speedup |
| keywords[3].score | 0.6830774545669556 |
| keywords[3].display_name | Speedup |
| keywords[4].id | https://openalex.org/keywords/big-data |
| keywords[4].score | 0.6497361660003662 |
| keywords[4].display_name | Big data |
| keywords[5].id | https://openalex.org/keywords/scheme |
| keywords[5].score | 0.63932204246521 |
| keywords[5].display_name | Scheme (mathematics) |
| keywords[6].id | https://openalex.org/keywords/association-rule-learning |
| keywords[6].score | 0.5998569130897522 |
| keywords[6].display_name | Association rule learning |
| keywords[7].id | https://openalex.org/keywords/associative-property |
| keywords[7].score | 0.5567540526390076 |
| keywords[7].display_name | Associative property |
| keywords[8].id | https://openalex.org/keywords/process |
| keywords[8].score | 0.504496693611145 |
| keywords[8].display_name | Process (computing) |
| keywords[9].id | https://openalex.org/keywords/computation |
| keywords[9].score | 0.5013175010681152 |
| keywords[9].display_name | Computation |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.49525871872901917 |
| keywords[10].display_name | Artificial intelligence |
| keywords[11].id | https://openalex.org/keywords/set |
| keywords[11].score | 0.47763195633888245 |
| keywords[11].display_name | Set (abstract data type) |
| keywords[12].id | https://openalex.org/keywords/machine-learning |
| keywords[12].score | 0.4670015573501587 |
| keywords[12].display_name | Machine learning |
| keywords[13].id | https://openalex.org/keywords/data-mining |
| keywords[13].score | 0.4480232000350952 |
| keywords[13].display_name | Data mining |
| keywords[14].id | https://openalex.org/keywords/content-addressable-memory |
| keywords[14].score | 0.4421577453613281 |
| keywords[14].display_name | Content-addressable memory |
| keywords[15].id | https://openalex.org/keywords/high-memory |
| keywords[15].score | 0.4199480712413788 |
| keywords[15].display_name | High memory |
| keywords[16].id | https://openalex.org/keywords/algorithm |
| keywords[16].score | 0.2335711419582367 |
| keywords[16].display_name | Algorithm |
| keywords[17].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[17].score | 0.19735834002494812 |
| keywords[17].display_name | Artificial neural network |
| keywords[18].id | https://openalex.org/keywords/database |
| keywords[18].score | 0.19332563877105713 |
| keywords[18].display_name | Database |
| keywords[19].id | https://openalex.org/keywords/parallel-computing |
| keywords[19].score | 0.18959465622901917 |
| keywords[19].display_name | Parallel computing |
| language | en |
| locations[0].id | doi:10.1016/j.ins.2015.10.041 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S192650101 |
| locations[0].source.issn | 0020-0255, 1872-6291 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0020-0255 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Information Sciences |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Information Sciences |
| locations[0].landing_page_url | https://doi.org/10.1016/j.ins.2015.10.041 |
| locations[1].id | pmh:oai:arpi.unipi.it:11568/799448 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4377196265 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | CINECA IRIS Institutial research information system (University of Pisa) |
| locations[1].source.host_organization | https://openalex.org/I108290504 |
| locations[1].source.host_organization_name | University of Pisa |
| locations[1].source.host_organization_lineage | https://openalex.org/I108290504 |
| locations[1].license | cc-by-nc-nd |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | info:eu-repo/semantics/article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://hdl.handle.net/11568/799448 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5007774813 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5951-1265 |
| authorships[0].author.display_name | Alessio Bechini |
| authorships[0].countries | IT |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I108290504 |
| authorships[0].affiliations[0].raw_affiliation_string | Dipartimento di Ingegneria dell'Informazione, University of Pisa, Pisa, 56122, Italy |
| authorships[0].institutions[0].id | https://openalex.org/I108290504 |
| authorships[0].institutions[0].ror | https://ror.org/03ad39j10 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I108290504 |
| authorships[0].institutions[0].country_code | IT |
| authorships[0].institutions[0].display_name | University of Pisa |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Alessio Bechini |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Dipartimento di Ingegneria dell'Informazione, University of Pisa, Pisa, 56122, Italy |
| authorships[1].author.id | https://openalex.org/A5057031606 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5895-876X |
| authorships[1].author.display_name | Francesco Marcelloni |
| authorships[1].countries | IT |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I108290504 |
| authorships[1].affiliations[0].raw_affiliation_string | Dipartimento di Ingegneria dell'Informazione, University of Pisa, Pisa, 56122, Italy |
| authorships[1].institutions[0].id | https://openalex.org/I108290504 |
| authorships[1].institutions[0].ror | https://ror.org/03ad39j10 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I108290504 |
| authorships[1].institutions[0].country_code | IT |
| authorships[1].institutions[0].display_name | University of Pisa |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Francesco Marcelloni |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Dipartimento di Ingegneria dell'Informazione, University of Pisa, Pisa, 56122, Italy |
| authorships[2].author.id | https://openalex.org/A5009563148 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Armando Segatori |
| authorships[2].countries | IT |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I108290504 |
| authorships[2].affiliations[0].raw_affiliation_string | Dipartimento di Ingegneria dell'Informazione, University of Pisa, Pisa, 56122, Italy |
| authorships[2].institutions[0].id | https://openalex.org/I108290504 |
| authorships[2].institutions[0].ror | https://ror.org/03ad39j10 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I108290504 |
| authorships[2].institutions[0].country_code | IT |
| authorships[2].institutions[0].display_name | University of Pisa |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Armando Segatori |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Dipartimento di Ingegneria dell'Informazione, University of Pisa, Pisa, 56122, Italy |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | http://hdl.handle.net/11568/799448 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A MapReduce solution for associative classification of big data |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10538 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1710 |
| primary_topic.subfield.display_name | Information Systems |
| primary_topic.display_name | Data Mining Algorithms and Applications |
| related_works | https://openalex.org/W1533029210, https://openalex.org/W1972563870, https://openalex.org/W2046912830, https://openalex.org/W279701215, https://openalex.org/W1974468537, https://openalex.org/W1984090010, https://openalex.org/W2107697999, https://openalex.org/W2049114128, https://openalex.org/W1902246517, https://openalex.org/W2102673654 |
| cited_by_count | 107 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 5 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 4 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 7 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 10 |
| counts_by_year[6].year | 2019 |
| counts_by_year[6].cited_by_count | 25 |
| counts_by_year[7].year | 2018 |
| counts_by_year[7].cited_by_count | 24 |
| counts_by_year[8].year | 2017 |
| counts_by_year[8].cited_by_count | 16 |
| counts_by_year[9].year | 2016 |
| counts_by_year[9].cited_by_count | 10 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arpi.unipi.it:11568/799448 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4377196265 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | CINECA IRIS Institutial research information system (University of Pisa) |
| best_oa_location.source.host_organization | https://openalex.org/I108290504 |
| best_oa_location.source.host_organization_name | University of Pisa |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I108290504 |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | info:eu-repo/semantics/article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://hdl.handle.net/11568/799448 |
| primary_location.id | doi:10.1016/j.ins.2015.10.041 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S192650101 |
| primary_location.source.issn | 0020-0255, 1872-6291 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0020-0255 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Information Sciences |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Information Sciences |
| primary_location.landing_page_url | https://doi.org/10.1016/j.ins.2015.10.041 |
| publication_date | 2015-11-04 |
| publication_year | 2015 |
| referenced_works | https://openalex.org/W6679222186, https://openalex.org/W2998574808, https://openalex.org/W2136298054, https://openalex.org/W1963611305, https://openalex.org/W6680098747, https://openalex.org/W6680192438, https://openalex.org/W1500693574, https://openalex.org/W2911964244, https://openalex.org/W6684078207, https://openalex.org/W2141975087, https://openalex.org/W7062443464, https://openalex.org/W6676367512, https://openalex.org/W1983347928, https://openalex.org/W2025288138, https://openalex.org/W2018821139, https://openalex.org/W2173213060, https://openalex.org/W2157355837, https://openalex.org/W6637359126, https://openalex.org/W2019979668, https://openalex.org/W2164364358, https://openalex.org/W6635046684, https://openalex.org/W2115482638, https://openalex.org/W2071256736, https://openalex.org/W2157954477, https://openalex.org/W2076684951, https://openalex.org/W1208489, https://openalex.org/W6684593598, https://openalex.org/W6684495928, https://openalex.org/W6649304043, https://openalex.org/W6682837551, https://openalex.org/W6634675538, https://openalex.org/W6680817618, https://openalex.org/W2135074661, https://openalex.org/W6691343681, https://openalex.org/W2074935284, https://openalex.org/W6677771073, https://openalex.org/W1977283334, https://openalex.org/W1971774955, https://openalex.org/W6628656266, https://openalex.org/W2167652831, https://openalex.org/W2138061404, https://openalex.org/W2087295784, https://openalex.org/W6678050326, https://openalex.org/W6676395142, https://openalex.org/W1972977357, https://openalex.org/W6636597177, https://openalex.org/W2018605192, https://openalex.org/W2013561962, https://openalex.org/W6687322159, https://openalex.org/W6675123208, https://openalex.org/W6683141713, https://openalex.org/W6677347680, https://openalex.org/W6729140741, https://openalex.org/W2135335717, https://openalex.org/W2116762767, https://openalex.org/W2056910091, https://openalex.org/W1917795079, https://openalex.org/W2542364126, https://openalex.org/W2008475755, https://openalex.org/W2167681385, https://openalex.org/W2125055259, https://openalex.org/W2163738013, https://openalex.org/W4300874750, https://openalex.org/W3152364157, https://openalex.org/W4372267129, https://openalex.org/W2102589938, https://openalex.org/W3003253354, https://openalex.org/W4285719527, https://openalex.org/W2164604674, https://openalex.org/W1585743408, https://openalex.org/W2133991754, https://openalex.org/W2499586571, https://openalex.org/W2249344705, https://openalex.org/W2119745055, https://openalex.org/W1995797177, https://openalex.org/W2995564009, https://openalex.org/W2154642793, https://openalex.org/W23149702, https://openalex.org/W2181951910, https://openalex.org/W2166559705, https://openalex.org/W2154879298, https://openalex.org/W1481392940, https://openalex.org/W2109722477, https://openalex.org/W2372005802, https://openalex.org/W1578151950, https://openalex.org/W2140190241, https://openalex.org/W4376272906, https://openalex.org/W4213245422, https://openalex.org/W593727409, https://openalex.org/W2887515165, https://openalex.org/W1570448133, https://openalex.org/W1586759373, https://openalex.org/W2108869956, https://openalex.org/W2189465200, https://openalex.org/W2118938540, https://openalex.org/W1623342295, https://openalex.org/W2131718405, https://openalex.org/W2140864287, https://openalex.org/W1678889691 |
| referenced_works_count | 99 |
| abstract_inverted_index | |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 96 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.99770462 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |