A method for fast detection of wind farms from remote sensing images using deep learning and geospatial analysis Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1515/geo-2022-0645
The wind power industry is increasing worldwide every year. Thus, obtaining timely and detailed information on wind farms’ number and spatial distribution is critical for quantitatively estimating wind energy utilization and for planning the construction of new wind farms. Therefore, this study proposes a method for quickly identifying wind farms in a large-scale area. Given that wind farms mainly comprise individual objects such as wind turbines and substations, we labeled sample images of wind turbines and substations on a global scale. Then, these sample images are used to train a target recognition model and an object classification model and detect the specific locations of wind turbines and substations in the study area. Additionally, we deeply analyzed the location features of the wind turbines and further improved the recognition accuracy based on these known features using geographic constraints. Based on the location information of wind turbines and substations, a clustering model organizes them effectively into complete wind farms. A comprehensive evaluation of the clustering model verifies its scientific validity and reliability. Specifically, this framework was systematically tested throughout Vietnam with remarkable results, using high-resolution historical images provided by Google Earth. Indeed, our framework achieved 90.45% recall and 95.73% accuracy for wind turbines and 81.37% recall and 78.96% accuracy for substations. Finally, we successfully obtained the spatial location and distribution of 15 completed wind farms, demonstrating that the proposed scheme can quickly and accurately identify wind power plants in a large-scale area, which supports wind power management and energy utilization planning.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1515/geo-2022-0645
- OA Status
- gold
- Cited By
- 4
- References
- 40
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4399668515
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4399668515Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1515/geo-2022-0645Digital Object Identifier
- Title
-
A method for fast detection of wind farms from remote sensing images using deep learning and geospatial analysisWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-01Full publication date if available
- Authors
-
Deliang Chen, Taotao Cheng, Yanyan Lu, Jianbo Xiao, Chen Ji, Siyu Hong, Qizhi Zhuang, Liang ChengList of authors in order
- Landing page
-
https://doi.org/10.1515/geo-2022-0645Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1515/geo-2022-0645Direct OA link when available
- Concepts
-
Geospatial analysis, Remote sensing, Deep learning, Computer science, Geomatics, Environmental science, Artificial intelligence, GeologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4Per-year citation counts (last 5 years)
- References (count)
-
40Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4399668515 |
|---|---|
| doi | https://doi.org/10.1515/geo-2022-0645 |
| ids.doi | https://doi.org/10.1515/geo-2022-0645 |
| ids.openalex | https://openalex.org/W4399668515 |
| fwci | 2.5551142 |
| type | article |
| title | A method for fast detection of wind farms from remote sensing images using deep learning and geospatial analysis |
| biblio.issue | 1 |
| biblio.volume | 16 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11276 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.987500011920929 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Solar Radiation and Photovoltaics |
| topics[1].id | https://openalex.org/T10680 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9793999791145325 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2202 |
| topics[1].subfield.display_name | Aerospace Engineering |
| topics[1].display_name | Wind Energy Research and Development |
| topics[2].id | https://openalex.org/T11164 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.9789000153541565 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2305 |
| topics[2].subfield.display_name | Environmental Engineering |
| topics[2].display_name | Remote Sensing and LiDAR Applications |
| is_xpac | False |
| apc_list.value | 1000 |
| apc_list.currency | EUR |
| apc_list.value_usd | 1078 |
| apc_paid.value | 1000 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 1078 |
| concepts[0].id | https://openalex.org/C9770341 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8859838843345642 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1938983 |
| concepts[0].display_name | Geospatial analysis |
| concepts[1].id | https://openalex.org/C62649853 |
| concepts[1].level | 1 |
| concepts[1].score | 0.7071278691291809 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[1].display_name | Remote sensing |
| concepts[2].id | https://openalex.org/C108583219 |
| concepts[2].level | 2 |
| concepts[2].score | 0.4562053680419922 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[2].display_name | Deep learning |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.44767534732818604 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C12780434 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4464704394340515 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q619798 |
| concepts[4].display_name | Geomatics |
| concepts[5].id | https://openalex.org/C39432304 |
| concepts[5].level | 0 |
| concepts[5].score | 0.3931947946548462 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[5].display_name | Environmental science |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3466480076313019 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C127313418 |
| concepts[7].level | 0 |
| concepts[7].score | 0.3239264488220215 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[7].display_name | Geology |
| keywords[0].id | https://openalex.org/keywords/geospatial-analysis |
| keywords[0].score | 0.8859838843345642 |
| keywords[0].display_name | Geospatial analysis |
| keywords[1].id | https://openalex.org/keywords/remote-sensing |
| keywords[1].score | 0.7071278691291809 |
| keywords[1].display_name | Remote sensing |
| keywords[2].id | https://openalex.org/keywords/deep-learning |
| keywords[2].score | 0.4562053680419922 |
| keywords[2].display_name | Deep learning |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.44767534732818604 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/geomatics |
| keywords[4].score | 0.4464704394340515 |
| keywords[4].display_name | Geomatics |
| keywords[5].id | https://openalex.org/keywords/environmental-science |
| keywords[5].score | 0.3931947946548462 |
| keywords[5].display_name | Environmental science |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.3466480076313019 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/geology |
| keywords[7].score | 0.3239264488220215 |
| keywords[7].display_name | Geology |
| language | en |
| locations[0].id | doi:10.1515/geo-2022-0645 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2738772150 |
| locations[0].source.issn | 2391-5447 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2391-5447 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Open Geosciences |
| locations[0].source.host_organization | https://openalex.org/P4310320322 |
| locations[0].source.host_organization_name | De Gruyter Open |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320322, https://openalex.org/P4310313990 |
| locations[0].source.host_organization_lineage_names | De Gruyter Open, De Gruyter |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Open Geosciences |
| locations[0].landing_page_url | https://doi.org/10.1515/geo-2022-0645 |
| locations[1].id | pmh:oai:doaj.org/article:264a44f6e7584f07adc4bae0edd8efc2 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Open Geosciences, Vol 16, Iss 1, Pp 346-60 (2024) |
| locations[1].landing_page_url | https://doaj.org/article/264a44f6e7584f07adc4bae0edd8efc2 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5108049733 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0288-5618 |
| authorships[0].author.display_name | Deliang Chen |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I881766915 |
| authorships[0].affiliations[0].raw_affiliation_string | Key Laboratory of Land and Ocean Safety Decision Technology, Ministry of Education, Nanjing University , Nanjing , China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I41198531 |
| authorships[0].affiliations[1].raw_affiliation_string | School of Internet of Things, Nanjing University of Posts and Telecommunications , Nanjing , China |
| authorships[0].affiliations[2].institution_ids | https://openalex.org/I881766915 |
| authorships[0].affiliations[2].raw_affiliation_string | Situation Autonomous Awareness Integrated Research Platform for Key Technologies, Ministry of Education, Nanjing University , Nanjing , China |
| authorships[0].institutions[0].id | https://openalex.org/I881766915 |
| authorships[0].institutions[0].ror | https://ror.org/01rxvg760 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I881766915 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Nanjing University |
| authorships[0].institutions[1].id | https://openalex.org/I41198531 |
| authorships[0].institutions[1].ror | https://ror.org/043bpky34 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I41198531 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Nanjing University of Posts and Telecommunications |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Deliang Chen |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Key Laboratory of Land and Ocean Safety Decision Technology, Ministry of Education, Nanjing University , Nanjing , China, School of Internet of Things, Nanjing University of Posts and Telecommunications , Nanjing , China, Situation Autonomous Awareness Integrated Research Platform for Key Technologies, Ministry of Education, Nanjing University , Nanjing , China |
| authorships[1].author.id | https://openalex.org/A5101985910 |
| authorships[1].author.orcid | https://orcid.org/0009-0006-1242-1031 |
| authorships[1].author.display_name | Taotao Cheng |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I41198531 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Internet of Things, Nanjing University of Posts and Telecommunications , Nanjing , China |
| authorships[1].institutions[0].id | https://openalex.org/I41198531 |
| authorships[1].institutions[0].ror | https://ror.org/043bpky34 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I41198531 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Nanjing University of Posts and Telecommunications |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Taotao Cheng |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Internet of Things, Nanjing University of Posts and Telecommunications , Nanjing , China |
| authorships[2].author.id | https://openalex.org/A5101746531 |
| authorships[2].author.orcid | https://orcid.org/0009-0008-8201-1358 |
| authorships[2].author.display_name | Yanyan Lu |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I206777745 |
| authorships[2].affiliations[0].raw_affiliation_string | Institute of Natural Resources and Environment Audit, Nanjing Audit University , Nanjing , China |
| authorships[2].institutions[0].id | https://openalex.org/I206777745 |
| authorships[2].institutions[0].ror | https://ror.org/04zj2bd87 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I206777745 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Nanjing Audit University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yanyan Lu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Institute of Natural Resources and Environment Audit, Nanjing Audit University , Nanjing , China |
| authorships[3].author.id | https://openalex.org/A5030777903 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-3311-770X |
| authorships[3].author.display_name | Jianbo Xiao |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I41198531 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Internet of Things, Nanjing University of Posts and Telecommunications , Nanjing , China |
| authorships[3].institutions[0].id | https://openalex.org/I41198531 |
| authorships[3].institutions[0].ror | https://ror.org/043bpky34 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I41198531 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Nanjing University of Posts and Telecommunications |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jianbo Xiao |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Internet of Things, Nanjing University of Posts and Telecommunications , Nanjing , China |
| authorships[4].author.id | https://openalex.org/A5079170636 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-5740-4872 |
| authorships[4].author.display_name | Chen Ji |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I881766915 |
| authorships[4].affiliations[0].raw_affiliation_string | Key Laboratory of Land and Ocean Safety Decision Technology, Ministry of Education, Nanjing University , Nanjing , China |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I881766915 |
| authorships[4].affiliations[1].raw_affiliation_string | School of Geography and Ocean Science, Nanjing University , Nanjing , China |
| authorships[4].affiliations[2].institution_ids | https://openalex.org/I881766915 |
| authorships[4].affiliations[2].raw_affiliation_string | Situation Autonomous Awareness Integrated Research Platform for Key Technologies, Ministry of Education, Nanjing University , Nanjing , China |
| authorships[4].affiliations[3].raw_affiliation_string | Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology , Nanjing , China |
| authorships[4].institutions[0].id | https://openalex.org/I881766915 |
| authorships[4].institutions[0].ror | https://ror.org/01rxvg760 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I881766915 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Nanjing University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Chen Ji |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology , Nanjing , China, Key Laboratory of Land and Ocean Safety Decision Technology, Ministry of Education, Nanjing University , Nanjing , China, School of Geography and Ocean Science, Nanjing University , Nanjing , China, Situation Autonomous Awareness Integrated Research Platform for Key Technologies, Ministry of Education, Nanjing University , Nanjing , China |
| authorships[5].author.id | https://openalex.org/A5037514382 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Siyu Hong |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I41198531 |
| authorships[5].affiliations[0].raw_affiliation_string | School of Internet of Things, Nanjing University of Posts and Telecommunications , Nanjing , China |
| authorships[5].institutions[0].id | https://openalex.org/I41198531 |
| authorships[5].institutions[0].ror | https://ror.org/043bpky34 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I41198531 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Nanjing University of Posts and Telecommunications |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Siyu Hong |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | School of Internet of Things, Nanjing University of Posts and Telecommunications , Nanjing , China |
| authorships[6].author.id | https://openalex.org/A5002224077 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-7417-6197 |
| authorships[6].author.display_name | Qizhi Zhuang |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I881766915 |
| authorships[6].affiliations[0].raw_affiliation_string | Key Laboratory of Land and Ocean Safety Decision Technology, Ministry of Education, Nanjing University , Nanjing , China |
| authorships[6].affiliations[1].institution_ids | https://openalex.org/I881766915 |
| authorships[6].affiliations[1].raw_affiliation_string | School of Geography and Ocean Science, Nanjing University , Nanjing , China |
| authorships[6].affiliations[2].raw_affiliation_string | Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology , Nanjing , China |
| authorships[6].affiliations[3].institution_ids | https://openalex.org/I881766915 |
| authorships[6].affiliations[3].raw_affiliation_string | Situation Autonomous Awareness Integrated Research Platform for Key Technologies, Ministry of Education, Nanjing University , Nanjing , China |
| authorships[6].institutions[0].id | https://openalex.org/I881766915 |
| authorships[6].institutions[0].ror | https://ror.org/01rxvg760 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I881766915 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Nanjing University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Qizhi Zhuang |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology , Nanjing , China, Key Laboratory of Land and Ocean Safety Decision Technology, Ministry of Education, Nanjing University , Nanjing , China, School of Geography and Ocean Science, Nanjing University , Nanjing , China, Situation Autonomous Awareness Integrated Research Platform for Key Technologies, Ministry of Education, Nanjing University , Nanjing , China |
| authorships[7].author.id | https://openalex.org/A5101910670 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-4491-6681 |
| authorships[7].author.display_name | Liang Cheng |
| authorships[7].countries | CN |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I4210157323 |
| authorships[7].affiliations[0].raw_affiliation_string | Collaborative Innovation Center of South China Sea Studies , Nanjing , China |
| authorships[7].affiliations[1].institution_ids | https://openalex.org/I881766915 |
| authorships[7].affiliations[1].raw_affiliation_string | Key Laboratory of Land and Ocean Safety Decision Technology, Ministry of Education, Nanjing University , Nanjing , China |
| authorships[7].affiliations[2].institution_ids | https://openalex.org/I881766915 |
| authorships[7].affiliations[2].raw_affiliation_string | Situation Autonomous Awareness Integrated Research Platform for Key Technologies, Ministry of Education, Nanjing University , Nanjing , China |
| authorships[7].affiliations[3].raw_affiliation_string | Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology , Nanjing , China |
| authorships[7].affiliations[4].institution_ids | https://openalex.org/I881766915 |
| authorships[7].affiliations[4].raw_affiliation_string | School of Geography and Ocean Science, Nanjing University , Nanjing , China |
| authorships[7].institutions[0].id | https://openalex.org/I881766915 |
| authorships[7].institutions[0].ror | https://ror.org/01rxvg760 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I881766915 |
| authorships[7].institutions[0].country_code | CN |
| authorships[7].institutions[0].display_name | Nanjing University |
| authorships[7].institutions[1].id | https://openalex.org/I4210157323 |
| authorships[7].institutions[1].ror | https://ror.org/04jnpk588 |
| authorships[7].institutions[1].type | facility |
| authorships[7].institutions[1].lineage | https://openalex.org/I4210157323, https://openalex.org/I90610280 |
| authorships[7].institutions[1].country_code | CN |
| authorships[7].institutions[1].display_name | South China Institute of Collaborative Innovation |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Liang Cheng |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Collaborative Innovation Center of South China Sea Studies , Nanjing , China, Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology , Nanjing , China, Key Laboratory of Land and Ocean Safety Decision Technology, Ministry of Education, Nanjing University , Nanjing , China, School of Geography and Ocean Science, Nanjing University , Nanjing , China, Situation Autonomous Awareness Integrated Research Platform for Key Technologies, Ministry of Education, Nanjing University , Nanjing , China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1515/geo-2022-0645 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A method for fast detection of wind farms from remote sensing images using deep learning and geospatial analysis |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11276 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.987500011920929 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Solar Radiation and Photovoltaics |
| related_works | https://openalex.org/W2731899572, https://openalex.org/W3215138031, https://openalex.org/W3009238340, https://openalex.org/W4321369474, https://openalex.org/W4360585206, https://openalex.org/W4285208911, https://openalex.org/W3082895349, https://openalex.org/W4213079790, https://openalex.org/W2248239756, https://openalex.org/W4323565446 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1515/geo-2022-0645 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2738772150 |
| best_oa_location.source.issn | 2391-5447 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2391-5447 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Open Geosciences |
| best_oa_location.source.host_organization | https://openalex.org/P4310320322 |
| best_oa_location.source.host_organization_name | De Gruyter Open |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320322, https://openalex.org/P4310313990 |
| best_oa_location.source.host_organization_lineage_names | De Gruyter Open, De Gruyter |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Open Geosciences |
| best_oa_location.landing_page_url | https://doi.org/10.1515/geo-2022-0645 |
| primary_location.id | doi:10.1515/geo-2022-0645 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2738772150 |
| primary_location.source.issn | 2391-5447 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2391-5447 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Open Geosciences |
| primary_location.source.host_organization | https://openalex.org/P4310320322 |
| primary_location.source.host_organization_name | De Gruyter Open |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320322, https://openalex.org/P4310313990 |
| primary_location.source.host_organization_lineage_names | De Gruyter Open, De Gruyter |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Open Geosciences |
| primary_location.landing_page_url | https://doi.org/10.1515/geo-2022-0645 |
| publication_date | 2024-01-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2913635339, https://openalex.org/W4212935807, https://openalex.org/W4200618726, https://openalex.org/W4386240946, https://openalex.org/W4280554618, https://openalex.org/W2992240579, https://openalex.org/W2790992692, https://openalex.org/W3207157725, https://openalex.org/W3197956103, https://openalex.org/W2984243831, https://openalex.org/W4317034825, https://openalex.org/W3033348336, https://openalex.org/W3207105974, https://openalex.org/W2977090522, https://openalex.org/W2968084579, https://openalex.org/W2904145953, https://openalex.org/W3106664051, https://openalex.org/W3170730590, https://openalex.org/W2194775991, https://openalex.org/W1903029394, https://openalex.org/W2965127303, https://openalex.org/W3157183890, https://openalex.org/W2933458153, https://openalex.org/W2915594101, https://openalex.org/W4383103810, https://openalex.org/W4304688912, https://openalex.org/W2963351448, https://openalex.org/W3175085704, https://openalex.org/W1979151475, https://openalex.org/W2916891630, https://openalex.org/W1536680647, https://openalex.org/W3096609285, https://openalex.org/W2989604896, https://openalex.org/W2963037989, https://openalex.org/W2509157185, https://openalex.org/W4288801286, https://openalex.org/W4312504250, https://openalex.org/W4319870014, https://openalex.org/W3040101977, https://openalex.org/W4312082772 |
| referenced_works_count | 40 |
| abstract_inverted_index.A | 158 |
| abstract_inverted_index.a | 44, 52, 79, 90, 148, 238 |
| abstract_inverted_index.15 | 220 |
| abstract_inverted_index.an | 95 |
| abstract_inverted_index.as | 64 |
| abstract_inverted_index.by | 187 |
| abstract_inverted_index.in | 51, 109, 237 |
| abstract_inverted_index.is | 5, 23 |
| abstract_inverted_index.of | 36, 73, 104, 120, 143, 161, 219 |
| abstract_inverted_index.on | 16, 78, 131, 139 |
| abstract_inverted_index.to | 88 |
| abstract_inverted_index.we | 69, 114, 211 |
| abstract_inverted_index.The | 1 |
| abstract_inverted_index.and | 13, 20, 31, 67, 76, 94, 99, 107, 124, 146, 169, 196, 202, 205, 217, 231, 246 |
| abstract_inverted_index.are | 86 |
| abstract_inverted_index.can | 229 |
| abstract_inverted_index.for | 25, 32, 46, 199, 208 |
| abstract_inverted_index.its | 166 |
| abstract_inverted_index.new | 37 |
| abstract_inverted_index.our | 191 |
| abstract_inverted_index.the | 34, 101, 110, 117, 121, 127, 140, 162, 214, 226 |
| abstract_inverted_index.was | 174 |
| abstract_inverted_index.into | 154 |
| abstract_inverted_index.such | 63 |
| abstract_inverted_index.that | 56, 225 |
| abstract_inverted_index.them | 152 |
| abstract_inverted_index.this | 41, 172 |
| abstract_inverted_index.used | 87 |
| abstract_inverted_index.wind | 2, 17, 28, 38, 49, 57, 65, 74, 105, 122, 144, 156, 200, 222, 234, 243 |
| abstract_inverted_index.with | 179 |
| abstract_inverted_index.Based | 138 |
| abstract_inverted_index.Given | 55 |
| abstract_inverted_index.Then, | 82 |
| abstract_inverted_index.Thus, | 10 |
| abstract_inverted_index.area, | 240 |
| abstract_inverted_index.area. | 54, 112 |
| abstract_inverted_index.based | 130 |
| abstract_inverted_index.every | 8 |
| abstract_inverted_index.farms | 50, 58 |
| abstract_inverted_index.known | 133 |
| abstract_inverted_index.model | 93, 98, 150, 164 |
| abstract_inverted_index.power | 3, 235, 244 |
| abstract_inverted_index.study | 42, 111 |
| abstract_inverted_index.these | 83, 132 |
| abstract_inverted_index.train | 89 |
| abstract_inverted_index.using | 135, 182 |
| abstract_inverted_index.which | 241 |
| abstract_inverted_index.year. | 9 |
| abstract_inverted_index.78.96% | 206 |
| abstract_inverted_index.81.37% | 203 |
| abstract_inverted_index.90.45% | 194 |
| abstract_inverted_index.95.73% | 197 |
| abstract_inverted_index.Earth. | 189 |
| abstract_inverted_index.Google | 188 |
| abstract_inverted_index.deeply | 115 |
| abstract_inverted_index.detect | 100 |
| abstract_inverted_index.energy | 29, 247 |
| abstract_inverted_index.farms, | 223 |
| abstract_inverted_index.farms. | 39, 157 |
| abstract_inverted_index.global | 80 |
| abstract_inverted_index.images | 72, 85, 185 |
| abstract_inverted_index.mainly | 59 |
| abstract_inverted_index.method | 45 |
| abstract_inverted_index.number | 19 |
| abstract_inverted_index.object | 96 |
| abstract_inverted_index.plants | 236 |
| abstract_inverted_index.recall | 195, 204 |
| abstract_inverted_index.sample | 71, 84 |
| abstract_inverted_index.scale. | 81 |
| abstract_inverted_index.scheme | 228 |
| abstract_inverted_index.target | 91 |
| abstract_inverted_index.tested | 176 |
| abstract_inverted_index.timely | 12 |
| abstract_inverted_index.Indeed, | 190 |
| abstract_inverted_index.Vietnam | 178 |
| abstract_inverted_index.further | 125 |
| abstract_inverted_index.labeled | 70 |
| abstract_inverted_index.objects | 62 |
| abstract_inverted_index.quickly | 47, 230 |
| abstract_inverted_index.spatial | 21, 215 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Finally, | 210 |
| abstract_inverted_index.accuracy | 129, 198, 207 |
| abstract_inverted_index.achieved | 193 |
| abstract_inverted_index.analyzed | 116 |
| abstract_inverted_index.complete | 155 |
| abstract_inverted_index.comprise | 60 |
| abstract_inverted_index.critical | 24 |
| abstract_inverted_index.detailed | 14 |
| abstract_inverted_index.farms’ | 18 |
| abstract_inverted_index.features | 119, 134 |
| abstract_inverted_index.identify | 233 |
| abstract_inverted_index.improved | 126 |
| abstract_inverted_index.industry | 4 |
| abstract_inverted_index.location | 118, 141, 216 |
| abstract_inverted_index.obtained | 213 |
| abstract_inverted_index.planning | 33 |
| abstract_inverted_index.proposed | 227 |
| abstract_inverted_index.proposes | 43 |
| abstract_inverted_index.provided | 186 |
| abstract_inverted_index.results, | 181 |
| abstract_inverted_index.specific | 102 |
| abstract_inverted_index.supports | 242 |
| abstract_inverted_index.turbines | 66, 75, 106, 123, 145, 201 |
| abstract_inverted_index.validity | 168 |
| abstract_inverted_index.verifies | 165 |
| abstract_inverted_index.completed | 221 |
| abstract_inverted_index.framework | 173, 192 |
| abstract_inverted_index.locations | 103 |
| abstract_inverted_index.obtaining | 11 |
| abstract_inverted_index.organizes | 151 |
| abstract_inverted_index.planning. | 249 |
| abstract_inverted_index.worldwide | 7 |
| abstract_inverted_index.Therefore, | 40 |
| abstract_inverted_index.accurately | 232 |
| abstract_inverted_index.clustering | 149, 163 |
| abstract_inverted_index.estimating | 27 |
| abstract_inverted_index.evaluation | 160 |
| abstract_inverted_index.geographic | 136 |
| abstract_inverted_index.historical | 184 |
| abstract_inverted_index.increasing | 6 |
| abstract_inverted_index.individual | 61 |
| abstract_inverted_index.management | 245 |
| abstract_inverted_index.remarkable | 180 |
| abstract_inverted_index.scientific | 167 |
| abstract_inverted_index.throughout | 177 |
| abstract_inverted_index.effectively | 153 |
| abstract_inverted_index.identifying | 48 |
| abstract_inverted_index.information | 15, 142 |
| abstract_inverted_index.large-scale | 53, 239 |
| abstract_inverted_index.recognition | 92, 128 |
| abstract_inverted_index.substations | 77, 108 |
| abstract_inverted_index.utilization | 30, 248 |
| abstract_inverted_index.constraints. | 137 |
| abstract_inverted_index.construction | 35 |
| abstract_inverted_index.distribution | 22, 218 |
| abstract_inverted_index.reliability. | 170 |
| abstract_inverted_index.substations, | 68, 147 |
| abstract_inverted_index.substations. | 209 |
| abstract_inverted_index.successfully | 212 |
| abstract_inverted_index.Additionally, | 113 |
| abstract_inverted_index.Specifically, | 171 |
| abstract_inverted_index.comprehensive | 159 |
| abstract_inverted_index.demonstrating | 224 |
| abstract_inverted_index.classification | 97 |
| abstract_inverted_index.quantitatively | 26 |
| abstract_inverted_index.systematically | 175 |
| abstract_inverted_index.high-resolution | 183 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 97 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 8 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.8799999952316284 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.87312486 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |