A Methodology for Updating Prognostic Models via Kalman Filters Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.36001/ijphm.2016.v7i4.2525
Prognostic models are built to predict the future evolution of the state or health of a system. Typical applications of these models include predictions of damage (like crack, wear) andestimation of remaining useful life of a component. Prognostic models may be data based, based on known physics of the system or can be hybrid, i.e., built through a combination of data and physics. To build such models, one needs either data from the field (i.e., real-world operations) or simulations/ tests that qualitatively represent field observations. Often, field data is not easy to obtain and is limited in its availability. Thus, models are built with simulation or test data and then validated with field observations when they become available. This necessitates a procedure that allows for refinement of models to better represent real-world behavior without having to run expensive simulations or tests repeatedly. Further, a single prognostic model developed for an entire fleet may need to be updated with measurements obtained from individual units. In this paper, we describe a novel methodology, based on the Unscented Kalman Filter, that not only allows for updating such “fleet” models, but also guarantees improvement over the existing model.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.36001/ijphm.2016.v7i4.2525
- https://papers.phmsociety.org/index.php/ijphm/article/download/2525/1485
- OA Status
- diamond
- References
- 6
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3136008740
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3136008740Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.36001/ijphm.2016.v7i4.2525Digital Object Identifier
- Title
-
A Methodology for Updating Prognostic Models via Kalman FiltersWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-11-13Full publication date if available
- Authors
-
Venkatesh Rajagopalan, Arun SubramaniyanList of authors in order
- Landing page
-
https://doi.org/10.36001/ijphm.2016.v7i4.2525Publisher landing page
- PDF URL
-
https://papers.phmsociety.org/index.php/ijphm/article/download/2525/1485Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://papers.phmsociety.org/index.php/ijphm/article/download/2525/1485Direct OA link when available
- Concepts
-
Kalman filter, Field (mathematics), Computer science, Component (thermodynamics), Data mining, Artificial intelligence, Mathematics, Pure mathematics, Thermodynamics, PhysicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
6Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3136008740 |
|---|---|
| doi | https://doi.org/10.36001/ijphm.2016.v7i4.2525 |
| ids.doi | https://doi.org/10.36001/ijphm.2016.v7i4.2525 |
| ids.mag | 3136008740 |
| ids.openalex | https://openalex.org/W3136008740 |
| fwci | 0.0 |
| type | article |
| title | A Methodology for Updating Prognostic Models via Kalman Filters |
| biblio.issue | 4 |
| biblio.volume | 7 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T13126 |
| topics[0].field.id | https://openalex.org/fields/31 |
| topics[0].field.display_name | Physics and Astronomy |
| topics[0].score | 0.9864000082015991 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3109 |
| topics[0].subfield.display_name | Statistical and Nonlinear Physics |
| topics[0].display_name | Scientific Research and Discoveries |
| topics[1].id | https://openalex.org/T10534 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9815000295639038 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2205 |
| topics[1].subfield.display_name | Civil and Structural Engineering |
| topics[1].display_name | Structural Health Monitoring Techniques |
| topics[2].id | https://openalex.org/T10711 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9790999889373779 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Target Tracking and Data Fusion in Sensor Networks |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C157286648 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8198861479759216 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q846780 |
| concepts[0].display_name | Kalman filter |
| concepts[1].id | https://openalex.org/C9652623 |
| concepts[1].level | 2 |
| concepts[1].score | 0.696196973323822 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q190109 |
| concepts[1].display_name | Field (mathematics) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6596916913986206 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C168167062 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5536348819732666 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1117970 |
| concepts[3].display_name | Component (thermodynamics) |
| concepts[4].id | https://openalex.org/C124101348 |
| concepts[4].level | 1 |
| concepts[4].score | 0.40637001395225525 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[4].display_name | Data mining |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.2587009072303772 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C33923547 |
| concepts[6].level | 0 |
| concepts[6].score | 0.08187800645828247 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[6].display_name | Mathematics |
| concepts[7].id | https://openalex.org/C202444582 |
| concepts[7].level | 1 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[7].display_name | Pure mathematics |
| concepts[8].id | https://openalex.org/C97355855 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11473 |
| concepts[8].display_name | Thermodynamics |
| concepts[9].id | https://openalex.org/C121332964 |
| concepts[9].level | 0 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[9].display_name | Physics |
| keywords[0].id | https://openalex.org/keywords/kalman-filter |
| keywords[0].score | 0.8198861479759216 |
| keywords[0].display_name | Kalman filter |
| keywords[1].id | https://openalex.org/keywords/field |
| keywords[1].score | 0.696196973323822 |
| keywords[1].display_name | Field (mathematics) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6596916913986206 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/component |
| keywords[3].score | 0.5536348819732666 |
| keywords[3].display_name | Component (thermodynamics) |
| keywords[4].id | https://openalex.org/keywords/data-mining |
| keywords[4].score | 0.40637001395225525 |
| keywords[4].display_name | Data mining |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.2587009072303772 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/mathematics |
| keywords[6].score | 0.08187800645828247 |
| keywords[6].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.36001/ijphm.2016.v7i4.2525 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210188782 |
| locations[0].source.issn | 2153-2648 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2153-2648 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | International Journal of Prognostics and Health Management |
| locations[0].source.host_organization | https://openalex.org/P4310316674 |
| locations[0].source.host_organization_name | The Prognostics and Health Management Society |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310316674 |
| locations[0].source.host_organization_lineage_names | The Prognostics and Health Management Society |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://papers.phmsociety.org/index.php/ijphm/article/download/2525/1485 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Prognostics and Health Management |
| locations[0].landing_page_url | https://doi.org/10.36001/ijphm.2016.v7i4.2525 |
| locations[1].id | pmh:oai:doaj.org/article:f762a604a82b4720a346dc55dab3da64 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | International Journal of Prognostics and Health Management, Vol 7, Iss 4 (2016) |
| locations[1].landing_page_url | https://doaj.org/article/f762a604a82b4720a346dc55dab3da64 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5038303121 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Venkatesh Rajagopalan |
| authorships[0].affiliations[0].raw_affiliation_string | Prognostics Laboratory, GE Global Research Center, Bangalore, Karnataka, 560078, India |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Venkatesh Rajagopalan |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Prognostics Laboratory, GE Global Research Center, Bangalore, Karnataka, 560078, India |
| authorships[1].author.id | https://openalex.org/A5051897310 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6119-3182 |
| authorships[1].author.display_name | Arun Subramaniyan |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210134512 |
| authorships[1].affiliations[0].raw_affiliation_string | Structures Laboratory, GE Global Research Center, Niskayuna, New York, 12309, USA |
| authorships[1].institutions[0].id | https://openalex.org/I4210134512 |
| authorships[1].institutions[0].ror | https://ror.org/03e06qt98 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210134512 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | GE Global Research (United States) |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Arun Subramaniyan |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Structures Laboratory, GE Global Research Center, Niskayuna, New York, 12309, USA |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://papers.phmsociety.org/index.php/ijphm/article/download/2525/1485 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Methodology for Updating Prognostic Models via Kalman Filters |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T13126 |
| primary_topic.field.id | https://openalex.org/fields/31 |
| primary_topic.field.display_name | Physics and Astronomy |
| primary_topic.score | 0.9864000082015991 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3109 |
| primary_topic.subfield.display_name | Statistical and Nonlinear Physics |
| primary_topic.display_name | Scientific Research and Discoveries |
| related_works | https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W2382290278, https://openalex.org/W2350741829, https://openalex.org/W2130043461, https://openalex.org/W2530322880, https://openalex.org/W1596801655 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.36001/ijphm.2016.v7i4.2525 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210188782 |
| best_oa_location.source.issn | 2153-2648 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2153-2648 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | International Journal of Prognostics and Health Management |
| best_oa_location.source.host_organization | https://openalex.org/P4310316674 |
| best_oa_location.source.host_organization_name | The Prognostics and Health Management Society |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310316674 |
| best_oa_location.source.host_organization_lineage_names | The Prognostics and Health Management Society |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://papers.phmsociety.org/index.php/ijphm/article/download/2525/1485 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Prognostics and Health Management |
| best_oa_location.landing_page_url | https://doi.org/10.36001/ijphm.2016.v7i4.2525 |
| primary_location.id | doi:10.36001/ijphm.2016.v7i4.2525 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210188782 |
| primary_location.source.issn | 2153-2648 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2153-2648 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | International Journal of Prognostics and Health Management |
| primary_location.source.host_organization | https://openalex.org/P4310316674 |
| primary_location.source.host_organization_name | The Prognostics and Health Management Society |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310316674 |
| primary_location.source.host_organization_lineage_names | The Prognostics and Health Management Society |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://papers.phmsociety.org/index.php/ijphm/article/download/2525/1485 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Prognostics and Health Management |
| primary_location.landing_page_url | https://doi.org/10.36001/ijphm.2016.v7i4.2525 |
| publication_date | 2020-11-13 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W1485513406, https://openalex.org/W2013722564, https://openalex.org/W3090704166, https://openalex.org/W1970383721, https://openalex.org/W3160954918, https://openalex.org/W2173190456 |
| referenced_works_count | 6 |
| abstract_inverted_index.a | 15, 35, 57, 120, 143, 168 |
| abstract_inverted_index.In | 163 |
| abstract_inverted_index.To | 63 |
| abstract_inverted_index.an | 149 |
| abstract_inverted_index.be | 40, 52, 155 |
| abstract_inverted_index.in | 96 |
| abstract_inverted_index.is | 88, 94 |
| abstract_inverted_index.of | 9, 14, 19, 24, 30, 34, 47, 59, 126 |
| abstract_inverted_index.on | 44, 172 |
| abstract_inverted_index.or | 12, 50, 77, 105, 139 |
| abstract_inverted_index.to | 4, 91, 128, 135, 154 |
| abstract_inverted_index.we | 166 |
| abstract_inverted_index.and | 61, 93, 108 |
| abstract_inverted_index.are | 2, 101 |
| abstract_inverted_index.but | 186 |
| abstract_inverted_index.can | 51 |
| abstract_inverted_index.for | 124, 148, 181 |
| abstract_inverted_index.its | 97 |
| abstract_inverted_index.may | 39, 152 |
| abstract_inverted_index.not | 89, 178 |
| abstract_inverted_index.one | 67 |
| abstract_inverted_index.run | 136 |
| abstract_inverted_index.the | 6, 10, 48, 72, 173, 191 |
| abstract_inverted_index.This | 118 |
| abstract_inverted_index.also | 187 |
| abstract_inverted_index.data | 41, 60, 70, 87, 107 |
| abstract_inverted_index.easy | 90 |
| abstract_inverted_index.from | 71, 160 |
| abstract_inverted_index.life | 33 |
| abstract_inverted_index.need | 153 |
| abstract_inverted_index.only | 179 |
| abstract_inverted_index.over | 190 |
| abstract_inverted_index.such | 65, 183 |
| abstract_inverted_index.test | 106 |
| abstract_inverted_index.that | 80, 122, 177 |
| abstract_inverted_index.then | 109 |
| abstract_inverted_index.they | 115 |
| abstract_inverted_index.this | 164 |
| abstract_inverted_index.when | 114 |
| abstract_inverted_index.with | 103, 111, 157 |
| abstract_inverted_index.(like | 26 |
| abstract_inverted_index.Thus, | 99 |
| abstract_inverted_index.based | 43, 171 |
| abstract_inverted_index.build | 64 |
| abstract_inverted_index.built | 3, 55, 102 |
| abstract_inverted_index.field | 73, 83, 86, 112 |
| abstract_inverted_index.fleet | 151 |
| abstract_inverted_index.i.e., | 54 |
| abstract_inverted_index.known | 45 |
| abstract_inverted_index.model | 146 |
| abstract_inverted_index.needs | 68 |
| abstract_inverted_index.novel | 169 |
| abstract_inverted_index.state | 11 |
| abstract_inverted_index.tests | 79, 140 |
| abstract_inverted_index.these | 20 |
| abstract_inverted_index.wear) | 28 |
| abstract_inverted_index.(i.e., | 74 |
| abstract_inverted_index.Kalman | 175 |
| abstract_inverted_index.Often, | 85 |
| abstract_inverted_index.allows | 123, 180 |
| abstract_inverted_index.based, | 42 |
| abstract_inverted_index.become | 116 |
| abstract_inverted_index.better | 129 |
| abstract_inverted_index.crack, | 27 |
| abstract_inverted_index.damage | 25 |
| abstract_inverted_index.either | 69 |
| abstract_inverted_index.entire | 150 |
| abstract_inverted_index.future | 7 |
| abstract_inverted_index.having | 134 |
| abstract_inverted_index.health | 13 |
| abstract_inverted_index.model. | 193 |
| abstract_inverted_index.models | 1, 21, 38, 100, 127 |
| abstract_inverted_index.obtain | 92 |
| abstract_inverted_index.paper, | 165 |
| abstract_inverted_index.single | 144 |
| abstract_inverted_index.system | 49 |
| abstract_inverted_index.units. | 162 |
| abstract_inverted_index.useful | 32 |
| abstract_inverted_index.Filter, | 176 |
| abstract_inverted_index.Typical | 17 |
| abstract_inverted_index.hybrid, | 53 |
| abstract_inverted_index.include | 22 |
| abstract_inverted_index.limited | 95 |
| abstract_inverted_index.models, | 66, 185 |
| abstract_inverted_index.physics | 46 |
| abstract_inverted_index.predict | 5 |
| abstract_inverted_index.system. | 16 |
| abstract_inverted_index.through | 56 |
| abstract_inverted_index.updated | 156 |
| abstract_inverted_index.without | 133 |
| abstract_inverted_index.Further, | 142 |
| abstract_inverted_index.behavior | 132 |
| abstract_inverted_index.describe | 167 |
| abstract_inverted_index.existing | 192 |
| abstract_inverted_index.obtained | 159 |
| abstract_inverted_index.physics. | 62 |
| abstract_inverted_index.updating | 182 |
| abstract_inverted_index.Unscented | 174 |
| abstract_inverted_index.developed | 147 |
| abstract_inverted_index.evolution | 8 |
| abstract_inverted_index.expensive | 137 |
| abstract_inverted_index.procedure | 121 |
| abstract_inverted_index.remaining | 31 |
| abstract_inverted_index.represent | 82, 130 |
| abstract_inverted_index.validated | 110 |
| abstract_inverted_index.Prognostic | 0, 37 |
| abstract_inverted_index.available. | 117 |
| abstract_inverted_index.component. | 36 |
| abstract_inverted_index.guarantees | 188 |
| abstract_inverted_index.individual | 161 |
| abstract_inverted_index.prognostic | 145 |
| abstract_inverted_index.real-world | 75, 131 |
| abstract_inverted_index.refinement | 125 |
| abstract_inverted_index.simulation | 104 |
| abstract_inverted_index.combination | 58 |
| abstract_inverted_index.improvement | 189 |
| abstract_inverted_index.operations) | 76 |
| abstract_inverted_index.predictions | 23 |
| abstract_inverted_index.repeatedly. | 141 |
| abstract_inverted_index.simulations | 138 |
| abstract_inverted_index.“fleet” | 184 |
| abstract_inverted_index.applications | 18 |
| abstract_inverted_index.measurements | 158 |
| abstract_inverted_index.methodology, | 170 |
| abstract_inverted_index.necessitates | 119 |
| abstract_inverted_index.observations | 113 |
| abstract_inverted_index.simulations/ | 78 |
| abstract_inverted_index.andestimation | 29 |
| abstract_inverted_index.availability. | 98 |
| abstract_inverted_index.observations. | 84 |
| abstract_inverted_index.qualitatively | 81 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.17276852 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |