A mixed integer programming approach to minibeam aperture optimization for multi-collimator proton minibeam radiotherapy Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2502.16326
Background: Multi-collimator proton minibeam radiation therapy (MC-pMBRT) has recently emerged as a versatile technique for dose shaping, enabling peak-valley dose patterns in organs-at-risk (OAR) while maintaining a uniform dose distribution in tumor. MC-pMBRT leverages a set of generic multi-slit collimators (MSC) with varying center-to-center distances. However, the current method for minibeam aperture optimization (MAO), i.e., the selection of MSC per beam angle, is manual and heuristic, resulting in computational inefficiencies and no guarantee of optimality. This work introduces a novel mixed integer programming (MIP) approach to MAO for optimizing MC-pMBRT plan quality. Methods: The proposed MIP approach jointly optimizes dose distributions, peak-to-valley dose ratio (PVDR), and selects the optimal set of MSC per beam angle. The optimization problem includes decision variables for MSC selection per beam angle and spot weights. The proposed MIP approach is a two-step process: Step1: the binary variables are optimally determined to select MSC for each beam angle; Step 2: the continuous variables are solved to determine the spot weights. Both steps utilize iterative convex relaxation and the alternating direction method of multipliers to solve the problems. Results: The proposed MIP method for MAO (MIP-MAO) was validated against the conventional heuristic method (CONV) for MC-pMBRT treatment planning. Results indicate that MIP-MAO enhances the conformity index (CI) for the target and improves PVDR for OAR. For instance, in a head-and-neck case, CI improved from 0.61 (CONV) to 0.70 (MIP-MAO); in an abdomen case, CI improved from 0.78 (CONV) to 0.83 (MIP-MAO). Additionally, MIP-MAO reduced mean doses in the body and OAR. Conclusions: A novel MIP approach for MAO in MC-pMBRT is presented, showing demonstrated improvements in plan quality and PVDR compared to the heuristic method.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2502.16326
- https://arxiv.org/pdf/2502.16326
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4414839089
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414839089Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2502.16326Digital Object Identifier
- Title
-
A mixed integer programming approach to minibeam aperture optimization for multi-collimator proton minibeam radiotherapyWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-02-22Full publication date if available
- Authors
-
Nimita Shinde, Weijie Zhang, Yuting Lin, Hao GaoList of authors in order
- Landing page
-
https://arxiv.org/abs/2502.16326Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2502.16326Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2502.16326Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4414839089 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2502.16326 |
| ids.doi | https://doi.org/10.48550/arxiv.2502.16326 |
| ids.openalex | https://openalex.org/W4414839089 |
| fwci | |
| type | preprint |
| title | A mixed integer programming approach to minibeam aperture optimization for multi-collimator proton minibeam radiotherapy |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11176 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2740 |
| topics[0].subfield.display_name | Pulmonary and Respiratory Medicine |
| topics[0].display_name | Radiation Therapy and Dosimetry |
| topics[1].id | https://openalex.org/T11005 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9904999732971191 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Radiation Effects in Electronics |
| topics[2].id | https://openalex.org/T10358 |
| topics[2].field.id | https://openalex.org/fields/31 |
| topics[2].field.display_name | Physics and Astronomy |
| topics[2].score | 0.9853000044822693 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3108 |
| topics[2].subfield.display_name | Radiation |
| topics[2].display_name | Advanced Radiotherapy Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2502.16326 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2502.16326 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2502.16326 |
| locations[1].id | doi:10.48550/arxiv.2502.16326 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2502.16326 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5116576859 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Nimita Shinde |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Shinde, Nimita |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100366498 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6462-6067 |
| authorships[1].author.display_name | Weijie Zhang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhang, Weijie |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5110935467 |
| authorships[2].author.orcid | https://orcid.org/0009-0007-7771-0050 |
| authorships[2].author.display_name | Yuting Lin |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Lin, Yuting |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5015169537 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-9304-6854 |
| authorships[3].author.display_name | Hao Gao |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Gao, Hao |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2502.16326 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A mixed integer programming approach to minibeam aperture optimization for multi-collimator proton minibeam radiotherapy |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11176 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2740 |
| primary_topic.subfield.display_name | Pulmonary and Respiratory Medicine |
| primary_topic.display_name | Radiation Therapy and Dosimetry |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2502.16326 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2502.16326 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2502.16326 |
| primary_location.id | pmh:oai:arXiv.org:2502.16326 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2502.16326 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2502.16326 |
| publication_date | 2025-02-22 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 255 |
| abstract_inverted_index.a | 11, 26, 34, 78, 135, 221 |
| abstract_inverted_index.2: | 153 |
| abstract_inverted_index.CI | 224, 236 |
| abstract_inverted_index.an | 233 |
| abstract_inverted_index.as | 10 |
| abstract_inverted_index.in | 21, 30, 67, 220, 232, 249, 261, 268 |
| abstract_inverted_index.is | 62, 134, 263 |
| abstract_inverted_index.no | 71 |
| abstract_inverted_index.of | 36, 57, 73, 110, 175 |
| abstract_inverted_index.to | 85, 145, 159, 177, 229, 241, 274 |
| abstract_inverted_index.For | 218 |
| abstract_inverted_index.MAO | 86, 187, 260 |
| abstract_inverted_index.MIP | 95, 132, 184, 257 |
| abstract_inverted_index.MSC | 58, 111, 122, 147 |
| abstract_inverted_index.The | 93, 115, 130, 182 |
| abstract_inverted_index.and | 64, 70, 105, 127, 170, 213, 252, 271 |
| abstract_inverted_index.are | 142, 157 |
| abstract_inverted_index.for | 14, 49, 87, 121, 148, 186, 197, 210, 216, 259 |
| abstract_inverted_index.has | 7 |
| abstract_inverted_index.per | 59, 112, 124 |
| abstract_inverted_index.set | 35, 109 |
| abstract_inverted_index.the | 46, 55, 107, 139, 154, 161, 171, 179, 192, 206, 211, 250, 275 |
| abstract_inverted_index.was | 189 |
| abstract_inverted_index.(CI) | 209 |
| abstract_inverted_index.0.61 | 227 |
| abstract_inverted_index.0.70 | 230 |
| abstract_inverted_index.0.78 | 239 |
| abstract_inverted_index.0.83 | 242 |
| abstract_inverted_index.Both | 164 |
| abstract_inverted_index.OAR. | 217, 253 |
| abstract_inverted_index.PVDR | 215, 272 |
| abstract_inverted_index.Step | 152 |
| abstract_inverted_index.This | 75 |
| abstract_inverted_index.beam | 60, 113, 125, 150 |
| abstract_inverted_index.body | 251 |
| abstract_inverted_index.dose | 15, 19, 28, 99, 102 |
| abstract_inverted_index.each | 149 |
| abstract_inverted_index.from | 226, 238 |
| abstract_inverted_index.mean | 247 |
| abstract_inverted_index.plan | 90, 269 |
| abstract_inverted_index.spot | 128, 162 |
| abstract_inverted_index.that | 203 |
| abstract_inverted_index.with | 41 |
| abstract_inverted_index.work | 76 |
| abstract_inverted_index.(MIP) | 83 |
| abstract_inverted_index.(MSC) | 40 |
| abstract_inverted_index.(OAR) | 23 |
| abstract_inverted_index.angle | 126 |
| abstract_inverted_index.case, | 223, 235 |
| abstract_inverted_index.doses | 248 |
| abstract_inverted_index.i.e., | 54 |
| abstract_inverted_index.index | 208 |
| abstract_inverted_index.mixed | 80 |
| abstract_inverted_index.novel | 79, 256 |
| abstract_inverted_index.ratio | 103 |
| abstract_inverted_index.solve | 178 |
| abstract_inverted_index.steps | 165 |
| abstract_inverted_index.while | 24 |
| abstract_inverted_index.(CONV) | 196, 228, 240 |
| abstract_inverted_index.(MAO), | 53 |
| abstract_inverted_index.Step1: | 138 |
| abstract_inverted_index.angle, | 61 |
| abstract_inverted_index.angle. | 114 |
| abstract_inverted_index.angle; | 151 |
| abstract_inverted_index.binary | 140 |
| abstract_inverted_index.convex | 168 |
| abstract_inverted_index.manual | 63 |
| abstract_inverted_index.method | 48, 174, 185, 195 |
| abstract_inverted_index.proton | 2 |
| abstract_inverted_index.select | 146 |
| abstract_inverted_index.solved | 158 |
| abstract_inverted_index.target | 212 |
| abstract_inverted_index.tumor. | 31 |
| abstract_inverted_index.(PVDR), | 104 |
| abstract_inverted_index.MIP-MAO | 204, 245 |
| abstract_inverted_index.Results | 201 |
| abstract_inverted_index.abdomen | 234 |
| abstract_inverted_index.against | 191 |
| abstract_inverted_index.current | 47 |
| abstract_inverted_index.emerged | 9 |
| abstract_inverted_index.generic | 37 |
| abstract_inverted_index.integer | 81 |
| abstract_inverted_index.jointly | 97 |
| abstract_inverted_index.method. | 277 |
| abstract_inverted_index.optimal | 108 |
| abstract_inverted_index.problem | 117 |
| abstract_inverted_index.quality | 270 |
| abstract_inverted_index.reduced | 246 |
| abstract_inverted_index.selects | 106 |
| abstract_inverted_index.showing | 265 |
| abstract_inverted_index.therapy | 5 |
| abstract_inverted_index.uniform | 27 |
| abstract_inverted_index.utilize | 166 |
| abstract_inverted_index.varying | 42 |
| abstract_inverted_index.However, | 45 |
| abstract_inverted_index.MC-pMBRT | 32, 89, 198, 262 |
| abstract_inverted_index.Methods: | 92 |
| abstract_inverted_index.Results: | 181 |
| abstract_inverted_index.aperture | 51 |
| abstract_inverted_index.approach | 84, 96, 133, 258 |
| abstract_inverted_index.compared | 273 |
| abstract_inverted_index.decision | 119 |
| abstract_inverted_index.enabling | 17 |
| abstract_inverted_index.enhances | 205 |
| abstract_inverted_index.improved | 225, 237 |
| abstract_inverted_index.improves | 214 |
| abstract_inverted_index.includes | 118 |
| abstract_inverted_index.indicate | 202 |
| abstract_inverted_index.minibeam | 3, 50 |
| abstract_inverted_index.patterns | 20 |
| abstract_inverted_index.process: | 137 |
| abstract_inverted_index.proposed | 94, 131, 183 |
| abstract_inverted_index.quality. | 91 |
| abstract_inverted_index.recently | 8 |
| abstract_inverted_index.shaping, | 16 |
| abstract_inverted_index.two-step | 136 |
| abstract_inverted_index.weights. | 129, 163 |
| abstract_inverted_index.(MIP-MAO) | 188 |
| abstract_inverted_index.determine | 160 |
| abstract_inverted_index.direction | 173 |
| abstract_inverted_index.guarantee | 72 |
| abstract_inverted_index.heuristic | 194, 276 |
| abstract_inverted_index.instance, | 219 |
| abstract_inverted_index.iterative | 167 |
| abstract_inverted_index.leverages | 33 |
| abstract_inverted_index.optimally | 143 |
| abstract_inverted_index.optimizes | 98 |
| abstract_inverted_index.planning. | 200 |
| abstract_inverted_index.problems. | 180 |
| abstract_inverted_index.radiation | 4 |
| abstract_inverted_index.resulting | 66 |
| abstract_inverted_index.selection | 56, 123 |
| abstract_inverted_index.technique | 13 |
| abstract_inverted_index.treatment | 199 |
| abstract_inverted_index.validated | 190 |
| abstract_inverted_index.variables | 120, 141, 156 |
| abstract_inverted_index.versatile | 12 |
| abstract_inverted_index.(MC-pMBRT) | 6 |
| abstract_inverted_index.(MIP-MAO). | 243 |
| abstract_inverted_index.(MIP-MAO); | 231 |
| abstract_inverted_index.conformity | 207 |
| abstract_inverted_index.continuous | 155 |
| abstract_inverted_index.determined | 144 |
| abstract_inverted_index.distances. | 44 |
| abstract_inverted_index.heuristic, | 65 |
| abstract_inverted_index.introduces | 77 |
| abstract_inverted_index.multi-slit | 38 |
| abstract_inverted_index.optimizing | 88 |
| abstract_inverted_index.presented, | 264 |
| abstract_inverted_index.relaxation | 169 |
| abstract_inverted_index.Background: | 0 |
| abstract_inverted_index.alternating | 172 |
| abstract_inverted_index.collimators | 39 |
| abstract_inverted_index.maintaining | 25 |
| abstract_inverted_index.multipliers | 176 |
| abstract_inverted_index.optimality. | 74 |
| abstract_inverted_index.peak-valley | 18 |
| abstract_inverted_index.programming | 82 |
| abstract_inverted_index.Conclusions: | 254 |
| abstract_inverted_index.conventional | 193 |
| abstract_inverted_index.demonstrated | 266 |
| abstract_inverted_index.distribution | 29 |
| abstract_inverted_index.improvements | 267 |
| abstract_inverted_index.optimization | 52, 116 |
| abstract_inverted_index.Additionally, | 244 |
| abstract_inverted_index.computational | 68 |
| abstract_inverted_index.head-and-neck | 222 |
| abstract_inverted_index.distributions, | 100 |
| abstract_inverted_index.inefficiencies | 69 |
| abstract_inverted_index.organs-at-risk | 22 |
| abstract_inverted_index.peak-to-valley | 101 |
| abstract_inverted_index.Multi-collimator | 1 |
| abstract_inverted_index.center-to-center | 43 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |