A Mixture Model for Estimating SARS-CoV-2 Seroprevalence in Chennai, India Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1093/aje/kwad103
Serological assays used to estimate the prevalence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) often rely on manufacturers’ cutoffs established on the basis of severe cases. We conducted a household-based serosurvey of 4,677 individuals in Chennai, India, from January to May 2021. Samples were tested for SARS-CoV-2 immunoglobulin G (IgG) antibodies to the spike (S) and nucleocapsid (N) proteins. We calculated seroprevalence, defining seropositivity using manufacturer cutoffs and using a mixture model based on measured IgG level. Using manufacturer cutoffs, there was a 5-fold difference in seroprevalence estimated by each assay. This difference was largely reconciled using the mixture model, with estimated anti-S and anti-N IgG seroprevalence of 64.9% (95% credible interval (CrI): 63.8, 66.0) and 51.5% (95% CrI: 50.2, 52.9), respectively. Age and socioeconomic factors showed inconsistent relationships with anti-S and anti-N IgG seropositivity using manufacturer cutoffs. In the mixture model, age was not associated with seropositivity, and improved household ventilation was associated with lower seropositivity odds. With global vaccine scale-up, the utility of the more stable anti-S IgG assay may be limited due to the inclusion of the S protein in several vaccines. Estimates of SARS-CoV-2 seroprevalence using alternative targets must consider heterogeneity in seroresponse to ensure that seroprevalence is not underestimated and correlates are not misinterpreted.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1093/aje/kwad103
- https://academic.oup.com/aje/advance-article-pdf/doi/10.1093/aje/kwad103/50058139/kwad103.pdf
- OA Status
- hybrid
- Cited By
- 11
- References
- 35
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4366603553
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4366603553Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1093/aje/kwad103Digital Object Identifier
- Title
-
A Mixture Model for Estimating SARS-CoV-2 Seroprevalence in Chennai, IndiaWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-04-21Full publication date if available
- Authors
-
Matt D. T. Hitchings, Eshan U. Patel, Rifa Khan, Aylur K. Srikrishnan, Mark G. Anderson, Karan Sanjay Kumar, Amy Wesolowski, Hussain Syed Iqbal, Mary A. Rodgers, Shruti H. Mehta, Gavin Cloherty, Derek A. T. Cummings, Sunil S. SolomonList of authors in order
- Landing page
-
https://doi.org/10.1093/aje/kwad103Publisher landing page
- PDF URL
-
https://academic.oup.com/aje/advance-article-pdf/doi/10.1093/aje/kwad103/50058139/kwad103.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://academic.oup.com/aje/advance-article-pdf/doi/10.1093/aje/kwad103/50058139/kwad103.pdfDirect OA link when available
- Concepts
-
Seroprevalence, Medicine, Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Coronavirus disease 2019 (COVID-19), 2019-20 coronavirus outbreak, Virology, Environmental health, Statistics, Demography, Outbreak, Internal medicine, Mathematics, Immunology, Antibody, Serology, Infectious disease (medical specialty), Disease, SociologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
11Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4, 2024: 5, 2023: 1, 2022: 1Per-year citation counts (last 5 years)
- References (count)
-
35Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4366603553 |
|---|---|
| doi | https://doi.org/10.1093/aje/kwad103 |
| ids.doi | https://doi.org/10.1093/aje/kwad103 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/37084085 |
| ids.openalex | https://openalex.org/W4366603553 |
| fwci | 2.81674658 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | Q000453 |
| mesh[1].descriptor_ui | D007194 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | epidemiology |
| mesh[1].descriptor_name | India |
| mesh[2].qualifier_ui | Q000453 |
| mesh[2].descriptor_ui | D000086382 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | epidemiology |
| mesh[2].descriptor_name | COVID-19 |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D000086402 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | SARS-CoV-2 |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D016036 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Seroepidemiologic Studies |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D007074 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Immunoglobulin G |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D006801 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Humans |
| mesh[7].qualifier_ui | Q000453 |
| mesh[7].descriptor_ui | D007194 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | epidemiology |
| mesh[7].descriptor_name | India |
| mesh[8].qualifier_ui | Q000453 |
| mesh[8].descriptor_ui | D000086382 |
| mesh[8].is_major_topic | True |
| mesh[8].qualifier_name | epidemiology |
| mesh[8].descriptor_name | COVID-19 |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D000086402 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | SARS-CoV-2 |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D016036 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Seroepidemiologic Studies |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D007074 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Immunoglobulin G |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D006801 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Humans |
| mesh[13].qualifier_ui | Q000453 |
| mesh[13].descriptor_ui | D007194 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | epidemiology |
| mesh[13].descriptor_name | India |
| mesh[14].qualifier_ui | Q000453 |
| mesh[14].descriptor_ui | D000086382 |
| mesh[14].is_major_topic | True |
| mesh[14].qualifier_name | epidemiology |
| mesh[14].descriptor_name | COVID-19 |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D000086402 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | SARS-CoV-2 |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D016036 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Seroepidemiologic Studies |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D007074 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Immunoglobulin G |
| type | article |
| title | A Mixture Model for Estimating SARS-CoV-2 Seroprevalence in Chennai, India |
| biblio.issue | 9 |
| biblio.volume | 192 |
| biblio.last_page | 1561 |
| biblio.first_page | 1552 |
| topics[0].id | https://openalex.org/T10118 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2725 |
| topics[0].subfield.display_name | Infectious Diseases |
| topics[0].display_name | SARS-CoV-2 and COVID-19 Research |
| topics[1].id | https://openalex.org/T10041 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9986000061035156 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2725 |
| topics[1].subfield.display_name | Infectious Diseases |
| topics[1].display_name | COVID-19 Clinical Research Studies |
| topics[2].id | https://openalex.org/T10410 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9976999759674072 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2611 |
| topics[2].subfield.display_name | Modeling and Simulation |
| topics[2].display_name | COVID-19 epidemiological studies |
| is_xpac | False |
| apc_list.value | 4450 |
| apc_list.currency | USD |
| apc_list.value_usd | 4450 |
| apc_paid.value | 4450 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 4450 |
| concepts[0].id | https://openalex.org/C2778494684 |
| concepts[0].level | 4 |
| concepts[0].score | 0.8044347167015076 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q3511357 |
| concepts[0].display_name | Seroprevalence |
| concepts[1].id | https://openalex.org/C71924100 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5951600670814514 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[1].display_name | Medicine |
| concepts[2].id | https://openalex.org/C3007834351 |
| concepts[2].level | 5 |
| concepts[2].score | 0.5898476243019104 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q82069695 |
| concepts[2].display_name | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) |
| concepts[3].id | https://openalex.org/C3008058167 |
| concepts[3].level | 4 |
| concepts[3].score | 0.5512847304344177 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q84263196 |
| concepts[3].display_name | Coronavirus disease 2019 (COVID-19) |
| concepts[4].id | https://openalex.org/C3006700255 |
| concepts[4].level | 3 |
| concepts[4].score | 0.4891498386859894 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q81068910 |
| concepts[4].display_name | 2019-20 coronavirus outbreak |
| concepts[5].id | https://openalex.org/C159047783 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4511871933937073 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7215 |
| concepts[5].display_name | Virology |
| concepts[6].id | https://openalex.org/C99454951 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4283975660800934 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q932068 |
| concepts[6].display_name | Environmental health |
| concepts[7].id | https://openalex.org/C105795698 |
| concepts[7].level | 1 |
| concepts[7].score | 0.352189838886261 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[7].display_name | Statistics |
| concepts[8].id | https://openalex.org/C149923435 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3353387415409088 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q37732 |
| concepts[8].display_name | Demography |
| concepts[9].id | https://openalex.org/C116675565 |
| concepts[9].level | 2 |
| concepts[9].score | 0.23958435654640198 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q3241045 |
| concepts[9].display_name | Outbreak |
| concepts[10].id | https://openalex.org/C126322002 |
| concepts[10].level | 1 |
| concepts[10].score | 0.16992247104644775 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[10].display_name | Internal medicine |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.16968786716461182 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C203014093 |
| concepts[12].level | 1 |
| concepts[12].score | 0.14665991067886353 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q101929 |
| concepts[12].display_name | Immunology |
| concepts[13].id | https://openalex.org/C159654299 |
| concepts[13].level | 2 |
| concepts[13].score | 0.11182445287704468 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q79460 |
| concepts[13].display_name | Antibody |
| concepts[14].id | https://openalex.org/C45189115 |
| concepts[14].level | 3 |
| concepts[14].score | 0.08174178004264832 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q502159 |
| concepts[14].display_name | Serology |
| concepts[15].id | https://openalex.org/C524204448 |
| concepts[15].level | 3 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q788926 |
| concepts[15].display_name | Infectious disease (medical specialty) |
| concepts[16].id | https://openalex.org/C2779134260 |
| concepts[16].level | 2 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q12136 |
| concepts[16].display_name | Disease |
| concepts[17].id | https://openalex.org/C144024400 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[17].display_name | Sociology |
| keywords[0].id | https://openalex.org/keywords/seroprevalence |
| keywords[0].score | 0.8044347167015076 |
| keywords[0].display_name | Seroprevalence |
| keywords[1].id | https://openalex.org/keywords/medicine |
| keywords[1].score | 0.5951600670814514 |
| keywords[1].display_name | Medicine |
| keywords[2].id | https://openalex.org/keywords/severe-acute-respiratory-syndrome-coronavirus-2 |
| keywords[2].score | 0.5898476243019104 |
| keywords[2].display_name | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) |
| keywords[3].id | https://openalex.org/keywords/coronavirus-disease-2019 |
| keywords[3].score | 0.5512847304344177 |
| keywords[3].display_name | Coronavirus disease 2019 (COVID-19) |
| keywords[4].id | https://openalex.org/keywords/2019-20-coronavirus-outbreak |
| keywords[4].score | 0.4891498386859894 |
| keywords[4].display_name | 2019-20 coronavirus outbreak |
| keywords[5].id | https://openalex.org/keywords/virology |
| keywords[5].score | 0.4511871933937073 |
| keywords[5].display_name | Virology |
| keywords[6].id | https://openalex.org/keywords/environmental-health |
| keywords[6].score | 0.4283975660800934 |
| keywords[6].display_name | Environmental health |
| keywords[7].id | https://openalex.org/keywords/statistics |
| keywords[7].score | 0.352189838886261 |
| keywords[7].display_name | Statistics |
| keywords[8].id | https://openalex.org/keywords/demography |
| keywords[8].score | 0.3353387415409088 |
| keywords[8].display_name | Demography |
| keywords[9].id | https://openalex.org/keywords/outbreak |
| keywords[9].score | 0.23958435654640198 |
| keywords[9].display_name | Outbreak |
| keywords[10].id | https://openalex.org/keywords/internal-medicine |
| keywords[10].score | 0.16992247104644775 |
| keywords[10].display_name | Internal medicine |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.16968786716461182 |
| keywords[11].display_name | Mathematics |
| keywords[12].id | https://openalex.org/keywords/immunology |
| keywords[12].score | 0.14665991067886353 |
| keywords[12].display_name | Immunology |
| keywords[13].id | https://openalex.org/keywords/antibody |
| keywords[13].score | 0.11182445287704468 |
| keywords[13].display_name | Antibody |
| keywords[14].id | https://openalex.org/keywords/serology |
| keywords[14].score | 0.08174178004264832 |
| keywords[14].display_name | Serology |
| language | en |
| locations[0].id | doi:10.1093/aje/kwad103 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S170967050 |
| locations[0].source.issn | 0002-9262, 1476-6256 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0002-9262 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | American Journal of Epidemiology |
| locations[0].source.host_organization | https://openalex.org/P4310311648 |
| locations[0].source.host_organization_name | Oxford University Press |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311648 |
| locations[0].license | cc-by-nc |
| locations[0].pdf_url | https://academic.oup.com/aje/advance-article-pdf/doi/10.1093/aje/kwad103/50058139/kwad103.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | American Journal of Epidemiology |
| locations[0].landing_page_url | https://doi.org/10.1093/aje/kwad103 |
| locations[1].id | pmid:37084085 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | American journal of epidemiology |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/37084085 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:10472327 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | cc-by-nc |
| locations[2].pdf_url | https://pmc.ncbi.nlm.nih.gov/articles/PMC10472327/pdf/kwad103.pdf |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by-nc |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Am J Epidemiol |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/10472327 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5005762665 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2327-3557 |
| authorships[0].author.display_name | Matt D. T. Hitchings |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I33213144 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Biostatistics, College of Public Health & Health Professions, University of Florida |
| authorships[0].affiliations[1].raw_affiliation_string | Gainesville, FL, USA |
| authorships[0].institutions[0].id | https://openalex.org/I33213144 |
| authorships[0].institutions[0].ror | https://ror.org/02y3ad647 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I33213144 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of Florida |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Matt D T Hitchings |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Biostatistics, College of Public Health & Health Professions, University of Florida, Gainesville, FL, USA |
| authorships[1].author.id | https://openalex.org/A5020176794 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2174-5004 |
| authorships[1].author.display_name | Eshan U. Patel |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I145311948 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I6059380 |
| authorships[1].affiliations[1].raw_affiliation_string | Baltimore, MD, USA |
| authorships[1].institutions[0].id | https://openalex.org/I145311948 |
| authorships[1].institutions[0].ror | https://ror.org/00za53h95 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I145311948 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Johns Hopkins University |
| authorships[1].institutions[1].id | https://openalex.org/I6059380 |
| authorships[1].institutions[1].ror | https://ror.org/024gw2733 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I6059380 |
| authorships[1].institutions[1].country_code | US |
| authorships[1].institutions[1].display_name | University of Baltimore |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Eshan U Patel |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Baltimore, MD, USA, Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health |
| authorships[2].author.id | https://openalex.org/A5076842977 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Rifa Khan |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].raw_affiliation_string | Chennai, Tamil Nadu, India |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I4210127818 |
| authorships[2].affiliations[1].raw_affiliation_string | YR Gaitonde Centre for AIDS Research and Education (YRGCARE) |
| authorships[2].institutions[0].id | https://openalex.org/I4210127818 |
| authorships[2].institutions[0].ror | https://ror.org/03j2pv534 |
| authorships[2].institutions[0].type | nonprofit |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210127818 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | YR Gaitonde Centre for AIDS Research and Education |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Rifa Khan |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Chennai, Tamil Nadu, India, YR Gaitonde Centre for AIDS Research and Education (YRGCARE) |
| authorships[3].author.id | https://openalex.org/A5001429601 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0533-6836 |
| authorships[3].author.display_name | Aylur K. Srikrishnan |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Aylur K Srikrishnan |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5048035121 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-3231-4296 |
| authorships[4].author.display_name | Mark G. Anderson |
| authorships[4].countries | GB, US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I3019813218 |
| authorships[4].affiliations[0].raw_affiliation_string | Abbott Laboratories |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I4210088555 |
| authorships[4].affiliations[1].raw_affiliation_string | Abbott Park, IL, USA |
| authorships[4].institutions[0].id | https://openalex.org/I3019813218 |
| authorships[4].institutions[0].ror | https://ror.org/03wnay029 |
| authorships[4].institutions[0].type | company |
| authorships[4].institutions[0].lineage | https://openalex.org/I3019813218, https://openalex.org/I4210088555 |
| authorships[4].institutions[0].country_code | GB |
| authorships[4].institutions[0].display_name | Abbott (United Kingdom) |
| authorships[4].institutions[1].id | https://openalex.org/I4210088555 |
| authorships[4].institutions[1].ror | https://ror.org/0052svj16 |
| authorships[4].institutions[1].type | company |
| authorships[4].institutions[1].lineage | https://openalex.org/I4210088555 |
| authorships[4].institutions[1].country_code | US |
| authorships[4].institutions[1].display_name | Abbott (United States) |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Mark Anderson |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Abbott Laboratories, Abbott Park, IL, USA |
| authorships[5].author.id | https://openalex.org/A5051954957 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Karan Sanjay Kumar |
| authorships[5].countries | IN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210127818 |
| authorships[5].affiliations[0].raw_affiliation_string | YR Gaitonde Centre for AIDS Research and Education (YRGCARE) |
| authorships[5].affiliations[1].raw_affiliation_string | Chennai, Tamil Nadu, India |
| authorships[5].institutions[0].id | https://openalex.org/I4210127818 |
| authorships[5].institutions[0].ror | https://ror.org/03j2pv534 |
| authorships[5].institutions[0].type | nonprofit |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210127818 |
| authorships[5].institutions[0].country_code | IN |
| authorships[5].institutions[0].display_name | YR Gaitonde Centre for AIDS Research and Education |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | K S Kumar |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Chennai, Tamil Nadu, India, YR Gaitonde Centre for AIDS Research and Education (YRGCARE) |
| authorships[6].author.id | https://openalex.org/A5047183014 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-6320-3575 |
| authorships[6].author.display_name | Amy Wesolowski |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I6059380 |
| authorships[6].affiliations[0].raw_affiliation_string | Baltimore, MD, USA |
| authorships[6].affiliations[1].institution_ids | https://openalex.org/I145311948 |
| authorships[6].affiliations[1].raw_affiliation_string | Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health |
| authorships[6].institutions[0].id | https://openalex.org/I145311948 |
| authorships[6].institutions[0].ror | https://ror.org/00za53h95 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I145311948 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | Johns Hopkins University |
| authorships[6].institutions[1].id | https://openalex.org/I6059380 |
| authorships[6].institutions[1].ror | https://ror.org/024gw2733 |
| authorships[6].institutions[1].type | education |
| authorships[6].institutions[1].lineage | https://openalex.org/I6059380 |
| authorships[6].institutions[1].country_code | US |
| authorships[6].institutions[1].display_name | University of Baltimore |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Amy P Wesolowski |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Baltimore, MD, USA, Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health |
| authorships[7].author.id | https://openalex.org/A5019128808 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-0410-7051 |
| authorships[7].author.display_name | Hussain Syed Iqbal |
| authorships[7].countries | IN |
| authorships[7].affiliations[0].raw_affiliation_string | Chennai, Tamil Nadu, India |
| authorships[7].affiliations[1].institution_ids | https://openalex.org/I4210127818 |
| authorships[7].affiliations[1].raw_affiliation_string | YR Gaitonde Centre for AIDS Research and Education (YRGCARE) |
| authorships[7].institutions[0].id | https://openalex.org/I4210127818 |
| authorships[7].institutions[0].ror | https://ror.org/03j2pv534 |
| authorships[7].institutions[0].type | nonprofit |
| authorships[7].institutions[0].lineage | https://openalex.org/I4210127818 |
| authorships[7].institutions[0].country_code | IN |
| authorships[7].institutions[0].display_name | YR Gaitonde Centre for AIDS Research and Education |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Syed H Iqbal |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Chennai, Tamil Nadu, India, YR Gaitonde Centre for AIDS Research and Education (YRGCARE) |
| authorships[8].author.id | https://openalex.org/A5033553191 |
| authorships[8].author.orcid | https://orcid.org/0000-0001-8815-8651 |
| authorships[8].author.display_name | Mary A. Rodgers |
| authorships[8].countries | GB, US |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I4210088555 |
| authorships[8].affiliations[0].raw_affiliation_string | Abbott Park, IL, USA |
| authorships[8].affiliations[1].institution_ids | https://openalex.org/I3019813218 |
| authorships[8].affiliations[1].raw_affiliation_string | Abbott Laboratories |
| authorships[8].institutions[0].id | https://openalex.org/I3019813218 |
| authorships[8].institutions[0].ror | https://ror.org/03wnay029 |
| authorships[8].institutions[0].type | company |
| authorships[8].institutions[0].lineage | https://openalex.org/I3019813218, https://openalex.org/I4210088555 |
| authorships[8].institutions[0].country_code | GB |
| authorships[8].institutions[0].display_name | Abbott (United Kingdom) |
| authorships[8].institutions[1].id | https://openalex.org/I4210088555 |
| authorships[8].institutions[1].ror | https://ror.org/0052svj16 |
| authorships[8].institutions[1].type | company |
| authorships[8].institutions[1].lineage | https://openalex.org/I4210088555 |
| authorships[8].institutions[1].country_code | US |
| authorships[8].institutions[1].display_name | Abbott (United States) |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Mary A Rodgers |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Abbott Laboratories, Abbott Park, IL, USA |
| authorships[9].author.id | https://openalex.org/A5013317411 |
| authorships[9].author.orcid | https://orcid.org/0000-0002-2523-0959 |
| authorships[9].author.display_name | Shruti H. Mehta |
| authorships[9].countries | US |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I6059380 |
| authorships[9].affiliations[0].raw_affiliation_string | Baltimore, MD, USA |
| authorships[9].affiliations[1].institution_ids | https://openalex.org/I145311948 |
| authorships[9].affiliations[1].raw_affiliation_string | Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health |
| authorships[9].institutions[0].id | https://openalex.org/I145311948 |
| authorships[9].institutions[0].ror | https://ror.org/00za53h95 |
| authorships[9].institutions[0].type | education |
| authorships[9].institutions[0].lineage | https://openalex.org/I145311948 |
| authorships[9].institutions[0].country_code | US |
| authorships[9].institutions[0].display_name | Johns Hopkins University |
| authorships[9].institutions[1].id | https://openalex.org/I6059380 |
| authorships[9].institutions[1].ror | https://ror.org/024gw2733 |
| authorships[9].institutions[1].type | education |
| authorships[9].institutions[1].lineage | https://openalex.org/I6059380 |
| authorships[9].institutions[1].country_code | US |
| authorships[9].institutions[1].display_name | University of Baltimore |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Shruti H Mehta |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | Baltimore, MD, USA, Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health |
| authorships[10].author.id | https://openalex.org/A5113976416 |
| authorships[10].author.orcid | |
| authorships[10].author.display_name | Gavin Cloherty |
| authorships[10].countries | GB, US |
| authorships[10].affiliations[0].institution_ids | https://openalex.org/I4210088555 |
| authorships[10].affiliations[0].raw_affiliation_string | Abbott Park, IL, USA |
| authorships[10].affiliations[1].institution_ids | https://openalex.org/I3019813218 |
| authorships[10].affiliations[1].raw_affiliation_string | Abbott Laboratories |
| authorships[10].institutions[0].id | https://openalex.org/I3019813218 |
| authorships[10].institutions[0].ror | https://ror.org/03wnay029 |
| authorships[10].institutions[0].type | company |
| authorships[10].institutions[0].lineage | https://openalex.org/I3019813218, https://openalex.org/I4210088555 |
| authorships[10].institutions[0].country_code | GB |
| authorships[10].institutions[0].display_name | Abbott (United Kingdom) |
| authorships[10].institutions[1].id | https://openalex.org/I4210088555 |
| authorships[10].institutions[1].ror | https://ror.org/0052svj16 |
| authorships[10].institutions[1].type | company |
| authorships[10].institutions[1].lineage | https://openalex.org/I4210088555 |
| authorships[10].institutions[1].country_code | US |
| authorships[10].institutions[1].display_name | Abbott (United States) |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Gavin Cloherty |
| authorships[10].is_corresponding | False |
| authorships[10].raw_affiliation_strings | Abbott Laboratories, Abbott Park, IL, USA |
| authorships[11].author.id | https://openalex.org/A5021062034 |
| authorships[11].author.orcid | https://orcid.org/0000-0002-9437-1907 |
| authorships[11].author.display_name | Derek A. T. Cummings |
| authorships[11].countries | US |
| authorships[11].affiliations[0].institution_ids | https://openalex.org/I33213144 |
| authorships[11].affiliations[0].raw_affiliation_string | Emerging Pathogens Institute, University of Florida |
| authorships[11].affiliations[1].raw_affiliation_string | Gainesville, FL, USA |
| authorships[11].affiliations[2].institution_ids | https://openalex.org/I33213144 |
| authorships[11].affiliations[2].raw_affiliation_string | Department of Biology, University of Florida |
| authorships[11].institutions[0].id | https://openalex.org/I33213144 |
| authorships[11].institutions[0].ror | https://ror.org/02y3ad647 |
| authorships[11].institutions[0].type | education |
| authorships[11].institutions[0].lineage | https://openalex.org/I33213144 |
| authorships[11].institutions[0].country_code | US |
| authorships[11].institutions[0].display_name | University of Florida |
| authorships[11].author_position | middle |
| authorships[11].raw_author_name | Derek A T Cummings |
| authorships[11].is_corresponding | False |
| authorships[11].raw_affiliation_strings | Department of Biology, University of Florida, Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA |
| authorships[12].author.id | https://openalex.org/A5101708710 |
| authorships[12].author.orcid | https://orcid.org/0000-0001-7947-3051 |
| authorships[12].author.display_name | Sunil S. Solomon |
| authorships[12].countries | US |
| authorships[12].affiliations[0].institution_ids | https://openalex.org/I6059380 |
| authorships[12].affiliations[0].raw_affiliation_string | Baltimore, MD, USA |
| authorships[12].affiliations[1].institution_ids | https://openalex.org/I145311948 |
| authorships[12].affiliations[1].raw_affiliation_string | Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health |
| authorships[12].institutions[0].id | https://openalex.org/I145311948 |
| authorships[12].institutions[0].ror | https://ror.org/00za53h95 |
| authorships[12].institutions[0].type | education |
| authorships[12].institutions[0].lineage | https://openalex.org/I145311948 |
| authorships[12].institutions[0].country_code | US |
| authorships[12].institutions[0].display_name | Johns Hopkins University |
| authorships[12].institutions[1].id | https://openalex.org/I6059380 |
| authorships[12].institutions[1].ror | https://ror.org/024gw2733 |
| authorships[12].institutions[1].type | education |
| authorships[12].institutions[1].lineage | https://openalex.org/I6059380 |
| authorships[12].institutions[1].country_code | US |
| authorships[12].institutions[1].display_name | University of Baltimore |
| authorships[12].author_position | last |
| authorships[12].raw_author_name | Sunil S Solomon |
| authorships[12].is_corresponding | False |
| authorships[12].raw_affiliation_strings | Baltimore, MD, USA, Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://academic.oup.com/aje/advance-article-pdf/doi/10.1093/aje/kwad103/50058139/kwad103.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Mixture Model for Estimating SARS-CoV-2 Seroprevalence in Chennai, India |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10118 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2725 |
| primary_topic.subfield.display_name | Infectious Diseases |
| primary_topic.display_name | SARS-CoV-2 and COVID-19 Research |
| related_works | https://openalex.org/W4206669628, https://openalex.org/W3036314732, https://openalex.org/W4205317059, https://openalex.org/W3009669391, https://openalex.org/W4382894326, https://openalex.org/W3198183218, https://openalex.org/W3081785542, https://openalex.org/W3171943759, https://openalex.org/W3176864053, https://openalex.org/W3084498529 |
| cited_by_count | 11 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 5 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1093/aje/kwad103 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S170967050 |
| best_oa_location.source.issn | 0002-9262, 1476-6256 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0002-9262 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | American Journal of Epidemiology |
| best_oa_location.source.host_organization | https://openalex.org/P4310311648 |
| best_oa_location.source.host_organization_name | Oxford University Press |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310311648 |
| best_oa_location.license | cc-by-nc |
| best_oa_location.pdf_url | https://academic.oup.com/aje/advance-article-pdf/doi/10.1093/aje/kwad103/50058139/kwad103.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | American Journal of Epidemiology |
| best_oa_location.landing_page_url | https://doi.org/10.1093/aje/kwad103 |
| primary_location.id | doi:10.1093/aje/kwad103 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S170967050 |
| primary_location.source.issn | 0002-9262, 1476-6256 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0002-9262 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | American Journal of Epidemiology |
| primary_location.source.host_organization | https://openalex.org/P4310311648 |
| primary_location.source.host_organization_name | Oxford University Press |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311648 |
| primary_location.license | cc-by-nc |
| primary_location.pdf_url | https://academic.oup.com/aje/advance-article-pdf/doi/10.1093/aje/kwad103/50058139/kwad103.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | American Journal of Epidemiology |
| primary_location.landing_page_url | https://doi.org/10.1093/aje/kwad103 |
| publication_date | 2023-04-21 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W3134555699, https://openalex.org/W4200228241, https://openalex.org/W3095683209, https://openalex.org/W3135657598, https://openalex.org/W3165647773, https://openalex.org/W3080346431, https://openalex.org/W3120636457, https://openalex.org/W3192055536, https://openalex.org/W3174875956, https://openalex.org/W3087128437, https://openalex.org/W6794763176, https://openalex.org/W3096525230, https://openalex.org/W3168438559, https://openalex.org/W3157938239, https://openalex.org/W3119736579, https://openalex.org/W3125310819, https://openalex.org/W3163246137, https://openalex.org/W3021039517, https://openalex.org/W3197542920, https://openalex.org/W3039276601, https://openalex.org/W3174317300, https://openalex.org/W4213072424, https://openalex.org/W3097888360, https://openalex.org/W3035189381, https://openalex.org/W3187037898, https://openalex.org/W3128701999, https://openalex.org/W4200184323, https://openalex.org/W3131352506, https://openalex.org/W2313849262, https://openalex.org/W3209215855, https://openalex.org/W4213383641, https://openalex.org/W3097311738, https://openalex.org/W4205590514, https://openalex.org/W3198925047, https://openalex.org/W3158091548 |
| referenced_works_count | 35 |
| abstract_inverted_index.2 | 14 |
| abstract_inverted_index.G | 50 |
| abstract_inverted_index.S | 182 |
| abstract_inverted_index.a | 30, 71, 84 |
| abstract_inverted_index.In | 140 |
| abstract_inverted_index.We | 28, 61 |
| abstract_inverted_index.be | 174 |
| abstract_inverted_index.by | 90 |
| abstract_inverted_index.in | 36, 87, 184, 197 |
| abstract_inverted_index.is | 203 |
| abstract_inverted_index.of | 8, 25, 33, 109, 166, 180, 188 |
| abstract_inverted_index.on | 18, 22, 75 |
| abstract_inverted_index.to | 4, 41, 53, 177, 199 |
| abstract_inverted_index.(N) | 59 |
| abstract_inverted_index.(S) | 56 |
| abstract_inverted_index.Age | 124 |
| abstract_inverted_index.IgG | 77, 107, 135, 171 |
| abstract_inverted_index.May | 42 |
| abstract_inverted_index.age | 144 |
| abstract_inverted_index.and | 57, 69, 105, 117, 125, 133, 150, 206 |
| abstract_inverted_index.are | 208 |
| abstract_inverted_index.due | 176 |
| abstract_inverted_index.for | 47 |
| abstract_inverted_index.may | 173 |
| abstract_inverted_index.not | 146, 204, 209 |
| abstract_inverted_index.the | 6, 23, 54, 99, 141, 164, 167, 178, 181 |
| abstract_inverted_index.was | 83, 95, 145, 154 |
| abstract_inverted_index.(95% | 111, 119 |
| abstract_inverted_index.CrI: | 120 |
| abstract_inverted_index.This | 93 |
| abstract_inverted_index.With | 160 |
| abstract_inverted_index.each | 91 |
| abstract_inverted_index.from | 39 |
| abstract_inverted_index.more | 168 |
| abstract_inverted_index.must | 194 |
| abstract_inverted_index.rely | 17 |
| abstract_inverted_index.that | 201 |
| abstract_inverted_index.used | 3 |
| abstract_inverted_index.were | 45 |
| abstract_inverted_index.with | 102, 131, 148, 156 |
| abstract_inverted_index.(IgG) | 51 |
| abstract_inverted_index.2021. | 43 |
| abstract_inverted_index.4,677 | 34 |
| abstract_inverted_index.50.2, | 121 |
| abstract_inverted_index.51.5% | 118 |
| abstract_inverted_index.63.8, | 115 |
| abstract_inverted_index.64.9% | 110 |
| abstract_inverted_index.66.0) | 116 |
| abstract_inverted_index.Using | 79 |
| abstract_inverted_index.acute | 10 |
| abstract_inverted_index.assay | 172 |
| abstract_inverted_index.based | 74 |
| abstract_inverted_index.basis | 24 |
| abstract_inverted_index.lower | 157 |
| abstract_inverted_index.model | 73 |
| abstract_inverted_index.odds. | 159 |
| abstract_inverted_index.often | 16 |
| abstract_inverted_index.spike | 55 |
| abstract_inverted_index.there | 82 |
| abstract_inverted_index.using | 66, 70, 98, 137, 191 |
| abstract_inverted_index.(CrI): | 114 |
| abstract_inverted_index.5-fold | 85 |
| abstract_inverted_index.52.9), | 122 |
| abstract_inverted_index.India, | 38 |
| abstract_inverted_index.anti-N | 106, 134 |
| abstract_inverted_index.anti-S | 104, 132, 170 |
| abstract_inverted_index.assay. | 92 |
| abstract_inverted_index.assays | 2 |
| abstract_inverted_index.cases. | 27 |
| abstract_inverted_index.ensure | 200 |
| abstract_inverted_index.global | 161 |
| abstract_inverted_index.level. | 78 |
| abstract_inverted_index.model, | 101, 143 |
| abstract_inverted_index.severe | 9, 26 |
| abstract_inverted_index.showed | 128 |
| abstract_inverted_index.stable | 169 |
| abstract_inverted_index.tested | 46 |
| abstract_inverted_index.January | 40 |
| abstract_inverted_index.Samples | 44 |
| abstract_inverted_index.cutoffs | 20, 68 |
| abstract_inverted_index.factors | 127 |
| abstract_inverted_index.largely | 96 |
| abstract_inverted_index.limited | 175 |
| abstract_inverted_index.mixture | 72, 100, 142 |
| abstract_inverted_index.protein | 183 |
| abstract_inverted_index.several | 185 |
| abstract_inverted_index.targets | 193 |
| abstract_inverted_index.utility | 165 |
| abstract_inverted_index.vaccine | 162 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Chennai, | 37 |
| abstract_inverted_index.consider | 195 |
| abstract_inverted_index.credible | 112 |
| abstract_inverted_index.cutoffs, | 81 |
| abstract_inverted_index.cutoffs. | 139 |
| abstract_inverted_index.defining | 64 |
| abstract_inverted_index.estimate | 5 |
| abstract_inverted_index.improved | 151 |
| abstract_inverted_index.interval | 113 |
| abstract_inverted_index.measured | 76 |
| abstract_inverted_index.syndrome | 12 |
| abstract_inverted_index.Estimates | 187 |
| abstract_inverted_index.conducted | 29 |
| abstract_inverted_index.estimated | 89, 103 |
| abstract_inverted_index.household | 152 |
| abstract_inverted_index.inclusion | 179 |
| abstract_inverted_index.proteins. | 60 |
| abstract_inverted_index.scale-up, | 163 |
| abstract_inverted_index.vaccines. | 186 |
| abstract_inverted_index.SARS-CoV-2 | 48, 189 |
| abstract_inverted_index.antibodies | 52 |
| abstract_inverted_index.associated | 147, 155 |
| abstract_inverted_index.calculated | 62 |
| abstract_inverted_index.correlates | 207 |
| abstract_inverted_index.difference | 86, 94 |
| abstract_inverted_index.prevalence | 7 |
| abstract_inverted_index.reconciled | 97 |
| abstract_inverted_index.serosurvey | 32 |
| abstract_inverted_index.Serological | 1 |
| abstract_inverted_index.alternative | 192 |
| abstract_inverted_index.coronavirus | 13 |
| abstract_inverted_index.established | 21 |
| abstract_inverted_index.individuals | 35 |
| abstract_inverted_index.respiratory | 11 |
| abstract_inverted_index.ventilation | 153 |
| abstract_inverted_index.(SARS-CoV-2) | 15 |
| abstract_inverted_index.inconsistent | 129 |
| abstract_inverted_index.manufacturer | 67, 80, 138 |
| abstract_inverted_index.nucleocapsid | 58 |
| abstract_inverted_index.seroresponse | 198 |
| abstract_inverted_index.heterogeneity | 196 |
| abstract_inverted_index.relationships | 130 |
| abstract_inverted_index.respectively. | 123 |
| abstract_inverted_index.socioeconomic | 126 |
| abstract_inverted_index.immunoglobulin | 49 |
| abstract_inverted_index.seropositivity | 65, 136, 158 |
| abstract_inverted_index.seroprevalence | 88, 108, 190, 202 |
| abstract_inverted_index.underestimated | 205 |
| abstract_inverted_index.household-based | 31 |
| abstract_inverted_index.misinterpreted. | 210 |
| abstract_inverted_index.seropositivity, | 149 |
| abstract_inverted_index.seroprevalence, | 63 |
| abstract_inverted_index.manufacturers’ | 19 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5005762665 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 13 |
| corresponding_institution_ids | https://openalex.org/I33213144 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.7300000190734863 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile.value | 0.87897066 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |