A Model for Selection of Attractions in Theme Park and Estimation of Model Parameters Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.1527/tjsai.wd-b
The theme park problem is a platform where methods of guiding visitors to relieve congestion are developed and evaluated by reproducing a crowded theme park on a computer. In the theme park problem, the attraction selection model is an important element in the simulator. In previous studies, multinomial logit model was mainly used for attraction selection. However, when we observed real amusement parks, we found that we can not reproduce the characteristics of waiting time of real attraction by this model. In this research, we propose a multinomial linear model as a model of attraction selection. This model can express the rational behavior of visitors that waits for a while when waiting times of all attractions are too long for them. We showed that this model can reproduce characteristics of waiting time using multiagent simulator (MAS). We also developed a method to estimate the parameters of the proposed model from the aggregated data of the output of MAS. As a result of numerical experiments, it was confirmed that the performance of the parameter estimation was good. The proposed model and method for parameter estimation can be applied not only to the theme park problem but also to various problems related to human behavior of selection.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1527/tjsai.wd-b
- https://www.jstage.jst.go.jp/article/tjsai/34/5/34_wd-B/_pdf
- OA Status
- diamond
- References
- 11
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2970287762
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2970287762Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1527/tjsai.wd-bDigital Object Identifier
- Title
-
A Model for Selection of Attractions in Theme Park and Estimation of Model ParametersWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-08-31Full publication date if available
- Authors
-
Hitoshi Shimizu, Tatsushi Matsubayashi, Futoshi Naya, Hiroshi SawadaList of authors in order
- Landing page
-
https://doi.org/10.1527/tjsai.wd-bPublisher landing page
- PDF URL
-
https://www.jstage.jst.go.jp/article/tjsai/34/5/34_wd-B/_pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://www.jstage.jst.go.jp/article/tjsai/34/5/34_wd-B/_pdfDirect OA link when available
- Concepts
-
Theme park, Computer science, Theme (computing), Selection (genetic algorithm), Attraction, Multinomial logistic regression, Estimation, Amusement, Model selection, Artificial intelligence, Operations research, Mathematical optimization, Simulation, Machine learning, Mathematics, Tourism, Geography, Operating system, Archaeology, Linguistics, Philosophy, Psychotherapist, Economics, Psychology, ManagementTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
11Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2970287762 |
|---|---|
| doi | https://doi.org/10.1527/tjsai.wd-b |
| ids.doi | https://doi.org/10.1527/tjsai.wd-b |
| ids.mag | 2970287762 |
| ids.openalex | https://openalex.org/W2970287762 |
| fwci | 0.0 |
| type | article |
| title | A Model for Selection of Attractions in Theme Park and Estimation of Model Parameters |
| biblio.issue | 5 |
| biblio.volume | 34 |
| biblio.last_page | B_1 |
| biblio.first_page | wd |
| topics[0].id | https://openalex.org/T13729 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9649999737739563 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2308 |
| topics[0].subfield.display_name | Management, Monitoring, Policy and Law |
| topics[0].display_name | Korean Urban and Social Studies |
| topics[1].id | https://openalex.org/T14233 |
| topics[1].field.id | https://openalex.org/fields/33 |
| topics[1].field.display_name | Social Sciences |
| topics[1].score | 0.9379000067710876 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3316 |
| topics[1].subfield.display_name | Cultural Studies |
| topics[1].display_name | Diverse Topics in Contemporary Research |
| topics[2].id | https://openalex.org/T14101 |
| topics[2].field.id | https://openalex.org/fields/20 |
| topics[2].field.display_name | Economics, Econometrics and Finance |
| topics[2].score | 0.9200999736785889 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2003 |
| topics[2].subfield.display_name | Finance |
| topics[2].display_name | Financial Crisis of the 21st Century |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C3018487226 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8996763825416565 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q194195 |
| concepts[0].display_name | Theme park |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7894964218139648 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C33566652 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7667210102081299 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1065927 |
| concepts[2].display_name | Theme (computing) |
| concepts[3].id | https://openalex.org/C81917197 |
| concepts[3].level | 2 |
| concepts[3].score | 0.7013252377510071 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q628760 |
| concepts[3].display_name | Selection (genetic algorithm) |
| concepts[4].id | https://openalex.org/C2778364177 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6562373638153076 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2247133 |
| concepts[4].display_name | Attraction |
| concepts[5].id | https://openalex.org/C117568660 |
| concepts[5].level | 2 |
| concepts[5].score | 0.6309767365455627 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1650843 |
| concepts[5].display_name | Multinomial logistic regression |
| concepts[6].id | https://openalex.org/C96250715 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5194113254547119 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q965330 |
| concepts[6].display_name | Estimation |
| concepts[7].id | https://openalex.org/C2779056813 |
| concepts[7].level | 2 |
| concepts[7].score | 0.48500606417655945 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2844542 |
| concepts[7].display_name | Amusement |
| concepts[8].id | https://openalex.org/C93959086 |
| concepts[8].level | 2 |
| concepts[8].score | 0.45451897382736206 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q6888345 |
| concepts[8].display_name | Model selection |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.43492767214775085 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C42475967 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3888639211654663 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q194292 |
| concepts[10].display_name | Operations research |
| concepts[11].id | https://openalex.org/C126255220 |
| concepts[11].level | 1 |
| concepts[11].score | 0.37135034799575806 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[11].display_name | Mathematical optimization |
| concepts[12].id | https://openalex.org/C44154836 |
| concepts[12].level | 1 |
| concepts[12].score | 0.3608461618423462 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q45045 |
| concepts[12].display_name | Simulation |
| concepts[13].id | https://openalex.org/C119857082 |
| concepts[13].level | 1 |
| concepts[13].score | 0.355231910943985 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[13].display_name | Machine learning |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.14515191316604614 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C18918823 |
| concepts[15].level | 2 |
| concepts[15].score | 0.12300464510917664 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q49389 |
| concepts[15].display_name | Tourism |
| concepts[16].id | https://openalex.org/C205649164 |
| concepts[16].level | 0 |
| concepts[16].score | 0.08555775880813599 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[16].display_name | Geography |
| concepts[17].id | https://openalex.org/C111919701 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[17].display_name | Operating system |
| concepts[18].id | https://openalex.org/C166957645 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[18].display_name | Archaeology |
| concepts[19].id | https://openalex.org/C41895202 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[19].display_name | Linguistics |
| concepts[20].id | https://openalex.org/C138885662 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[20].display_name | Philosophy |
| concepts[21].id | https://openalex.org/C542102704 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q183257 |
| concepts[21].display_name | Psychotherapist |
| concepts[22].id | https://openalex.org/C162324750 |
| concepts[22].level | 0 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[22].display_name | Economics |
| concepts[23].id | https://openalex.org/C15744967 |
| concepts[23].level | 0 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[23].display_name | Psychology |
| concepts[24].id | https://openalex.org/C187736073 |
| concepts[24].level | 1 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q2920921 |
| concepts[24].display_name | Management |
| keywords[0].id | https://openalex.org/keywords/theme-park |
| keywords[0].score | 0.8996763825416565 |
| keywords[0].display_name | Theme park |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7894964218139648 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/theme |
| keywords[2].score | 0.7667210102081299 |
| keywords[2].display_name | Theme (computing) |
| keywords[3].id | https://openalex.org/keywords/selection |
| keywords[3].score | 0.7013252377510071 |
| keywords[3].display_name | Selection (genetic algorithm) |
| keywords[4].id | https://openalex.org/keywords/attraction |
| keywords[4].score | 0.6562373638153076 |
| keywords[4].display_name | Attraction |
| keywords[5].id | https://openalex.org/keywords/multinomial-logistic-regression |
| keywords[5].score | 0.6309767365455627 |
| keywords[5].display_name | Multinomial logistic regression |
| keywords[6].id | https://openalex.org/keywords/estimation |
| keywords[6].score | 0.5194113254547119 |
| keywords[6].display_name | Estimation |
| keywords[7].id | https://openalex.org/keywords/amusement |
| keywords[7].score | 0.48500606417655945 |
| keywords[7].display_name | Amusement |
| keywords[8].id | https://openalex.org/keywords/model-selection |
| keywords[8].score | 0.45451897382736206 |
| keywords[8].display_name | Model selection |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.43492767214775085 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/operations-research |
| keywords[10].score | 0.3888639211654663 |
| keywords[10].display_name | Operations research |
| keywords[11].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[11].score | 0.37135034799575806 |
| keywords[11].display_name | Mathematical optimization |
| keywords[12].id | https://openalex.org/keywords/simulation |
| keywords[12].score | 0.3608461618423462 |
| keywords[12].display_name | Simulation |
| keywords[13].id | https://openalex.org/keywords/machine-learning |
| keywords[13].score | 0.355231910943985 |
| keywords[13].display_name | Machine learning |
| keywords[14].id | https://openalex.org/keywords/mathematics |
| keywords[14].score | 0.14515191316604614 |
| keywords[14].display_name | Mathematics |
| keywords[15].id | https://openalex.org/keywords/tourism |
| keywords[15].score | 0.12300464510917664 |
| keywords[15].display_name | Tourism |
| keywords[16].id | https://openalex.org/keywords/geography |
| keywords[16].score | 0.08555775880813599 |
| keywords[16].display_name | Geography |
| language | en |
| locations[0].id | doi:10.1527/tjsai.wd-b |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S68749858 |
| locations[0].source.issn | 1346-0714, 1346-8030 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1346-0714 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Transactions of the Japanese Society for Artificial Intelligence |
| locations[0].source.host_organization | https://openalex.org/P4376904202 |
| locations[0].source.host_organization_name | The Japanese Society for Artificial Intelligence |
| locations[0].source.host_organization_lineage | https://openalex.org/P4376904202 |
| locations[0].source.host_organization_lineage_names | The Japanese Society for Artificial Intelligence |
| locations[0].license | |
| locations[0].pdf_url | https://www.jstage.jst.go.jp/article/tjsai/34/5/34_wd-B/_pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Transactions of the Japanese Society for Artificial Intelligence |
| locations[0].landing_page_url | https://doi.org/10.1527/tjsai.wd-b |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5087232767 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3279-2826 |
| authorships[0].author.display_name | Hitoshi Shimizu |
| authorships[0].affiliations[0].raw_affiliation_string | NTT Communication Science Laboratories |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hitoshi Shimizu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | NTT Communication Science Laboratories |
| authorships[1].author.id | https://openalex.org/A5001502780 |
| authorships[1].author.orcid | https://orcid.org/0009-0004-2793-8266 |
| authorships[1].author.display_name | Tatsushi Matsubayashi |
| authorships[1].affiliations[0].raw_affiliation_string | NTT Communication Science Laboratories |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Tatsushi Matsubayashi |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | NTT Communication Science Laboratories |
| authorships[2].author.id | https://openalex.org/A5048989380 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Futoshi Naya |
| authorships[2].affiliations[0].raw_affiliation_string | NTT Communication Science Laboratories |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Futoshi Naya |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | NTT Communication Science Laboratories |
| authorships[3].author.id | https://openalex.org/A5007032557 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4831-9286 |
| authorships[3].author.display_name | Hiroshi Sawada |
| authorships[3].affiliations[0].raw_affiliation_string | NTT Communication Science Laboratories |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Hiroshi Sawada |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | NTT Communication Science Laboratories |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.jstage.jst.go.jp/article/tjsai/34/5/34_wd-B/_pdf |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Model for Selection of Attractions in Theme Park and Estimation of Model Parameters |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T13729 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9649999737739563 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2308 |
| primary_topic.subfield.display_name | Management, Monitoring, Policy and Law |
| primary_topic.display_name | Korean Urban and Social Studies |
| related_works | https://openalex.org/W2649162566, https://openalex.org/W1976624158, https://openalex.org/W2401185341, https://openalex.org/W1507905128, https://openalex.org/W3171243418, https://openalex.org/W1967873080, https://openalex.org/W2516916062, https://openalex.org/W3118685567, https://openalex.org/W2067190279, https://openalex.org/W1524074216 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1527/tjsai.wd-b |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S68749858 |
| best_oa_location.source.issn | 1346-0714, 1346-8030 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1346-0714 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Transactions of the Japanese Society for Artificial Intelligence |
| best_oa_location.source.host_organization | https://openalex.org/P4376904202 |
| best_oa_location.source.host_organization_name | The Japanese Society for Artificial Intelligence |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4376904202 |
| best_oa_location.source.host_organization_lineage_names | The Japanese Society for Artificial Intelligence |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://www.jstage.jst.go.jp/article/tjsai/34/5/34_wd-B/_pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Transactions of the Japanese Society for Artificial Intelligence |
| best_oa_location.landing_page_url | https://doi.org/10.1527/tjsai.wd-b |
| primary_location.id | doi:10.1527/tjsai.wd-b |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S68749858 |
| primary_location.source.issn | 1346-0714, 1346-8030 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1346-0714 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Transactions of the Japanese Society for Artificial Intelligence |
| primary_location.source.host_organization | https://openalex.org/P4376904202 |
| primary_location.source.host_organization_name | The Japanese Society for Artificial Intelligence |
| primary_location.source.host_organization_lineage | https://openalex.org/P4376904202 |
| primary_location.source.host_organization_lineage_names | The Japanese Society for Artificial Intelligence |
| primary_location.license | |
| primary_location.pdf_url | https://www.jstage.jst.go.jp/article/tjsai/34/5/34_wd-B/_pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Transactions of the Japanese Society for Artificial Intelligence |
| primary_location.landing_page_url | https://doi.org/10.1527/tjsai.wd-b |
| publication_date | 2019-08-31 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W1978038786, https://openalex.org/W4239956569, https://openalex.org/W2019782231, https://openalex.org/W4245225829, https://openalex.org/W2319389843, https://openalex.org/W2519077638, https://openalex.org/W2115499237, https://openalex.org/W2130506531, https://openalex.org/W2051434435, https://openalex.org/W2063408601, https://openalex.org/W2146206720 |
| referenced_works_count | 11 |
| abstract_inverted_index.a | 5, 21, 26, 86, 91, 108, 139, 159 |
| abstract_inverted_index.As | 158 |
| abstract_inverted_index.In | 28, 44, 81 |
| abstract_inverted_index.We | 121, 136 |
| abstract_inverted_index.an | 38 |
| abstract_inverted_index.as | 90 |
| abstract_inverted_index.be | 185 |
| abstract_inverted_index.by | 19, 78 |
| abstract_inverted_index.in | 41 |
| abstract_inverted_index.is | 4, 37 |
| abstract_inverted_index.it | 164 |
| abstract_inverted_index.of | 9, 72, 75, 93, 103, 113, 129, 145, 153, 156, 161, 170, 203 |
| abstract_inverted_index.on | 25 |
| abstract_inverted_index.to | 12, 141, 189, 196, 200 |
| abstract_inverted_index.we | 58, 63, 66, 84 |
| abstract_inverted_index.The | 0, 176 |
| abstract_inverted_index.all | 114 |
| abstract_inverted_index.and | 17, 179 |
| abstract_inverted_index.are | 15, 116 |
| abstract_inverted_index.but | 194 |
| abstract_inverted_index.can | 67, 98, 126, 184 |
| abstract_inverted_index.for | 53, 107, 119, 181 |
| abstract_inverted_index.not | 68, 187 |
| abstract_inverted_index.the | 29, 33, 42, 70, 100, 143, 146, 150, 154, 168, 171, 190 |
| abstract_inverted_index.too | 117 |
| abstract_inverted_index.was | 50, 165, 174 |
| abstract_inverted_index.MAS. | 157 |
| abstract_inverted_index.This | 96 |
| abstract_inverted_index.also | 137, 195 |
| abstract_inverted_index.data | 152 |
| abstract_inverted_index.from | 149 |
| abstract_inverted_index.long | 118 |
| abstract_inverted_index.only | 188 |
| abstract_inverted_index.park | 2, 24, 31, 192 |
| abstract_inverted_index.real | 60, 76 |
| abstract_inverted_index.that | 65, 105, 123, 167 |
| abstract_inverted_index.this | 79, 82, 124 |
| abstract_inverted_index.time | 74, 131 |
| abstract_inverted_index.used | 52 |
| abstract_inverted_index.when | 57, 110 |
| abstract_inverted_index.found | 64 |
| abstract_inverted_index.good. | 175 |
| abstract_inverted_index.human | 201 |
| abstract_inverted_index.logit | 48 |
| abstract_inverted_index.model | 36, 49, 89, 92, 97, 125, 148, 178 |
| abstract_inverted_index.them. | 120 |
| abstract_inverted_index.theme | 1, 23, 30, 191 |
| abstract_inverted_index.times | 112 |
| abstract_inverted_index.using | 132 |
| abstract_inverted_index.waits | 106 |
| abstract_inverted_index.where | 7 |
| abstract_inverted_index.while | 109 |
| abstract_inverted_index.(MAS). | 135 |
| abstract_inverted_index.linear | 88 |
| abstract_inverted_index.mainly | 51 |
| abstract_inverted_index.method | 140, 180 |
| abstract_inverted_index.model. | 80 |
| abstract_inverted_index.output | 155 |
| abstract_inverted_index.parks, | 62 |
| abstract_inverted_index.result | 160 |
| abstract_inverted_index.showed | 122 |
| abstract_inverted_index.applied | 186 |
| abstract_inverted_index.crowded | 22 |
| abstract_inverted_index.element | 40 |
| abstract_inverted_index.express | 99 |
| abstract_inverted_index.guiding | 10 |
| abstract_inverted_index.methods | 8 |
| abstract_inverted_index.problem | 3, 193 |
| abstract_inverted_index.propose | 85 |
| abstract_inverted_index.related | 199 |
| abstract_inverted_index.relieve | 13 |
| abstract_inverted_index.various | 197 |
| abstract_inverted_index.waiting | 73, 111, 130 |
| abstract_inverted_index.However, | 56 |
| abstract_inverted_index.behavior | 102, 202 |
| abstract_inverted_index.estimate | 142 |
| abstract_inverted_index.observed | 59 |
| abstract_inverted_index.platform | 6 |
| abstract_inverted_index.previous | 45 |
| abstract_inverted_index.problem, | 32 |
| abstract_inverted_index.problems | 198 |
| abstract_inverted_index.proposed | 147, 177 |
| abstract_inverted_index.rational | 101 |
| abstract_inverted_index.studies, | 46 |
| abstract_inverted_index.visitors | 11, 104 |
| abstract_inverted_index.amusement | 61 |
| abstract_inverted_index.computer. | 27 |
| abstract_inverted_index.confirmed | 166 |
| abstract_inverted_index.developed | 16, 138 |
| abstract_inverted_index.evaluated | 18 |
| abstract_inverted_index.important | 39 |
| abstract_inverted_index.numerical | 162 |
| abstract_inverted_index.parameter | 172, 182 |
| abstract_inverted_index.reproduce | 69, 127 |
| abstract_inverted_index.research, | 83 |
| abstract_inverted_index.selection | 35 |
| abstract_inverted_index.simulator | 134 |
| abstract_inverted_index.aggregated | 151 |
| abstract_inverted_index.attraction | 34, 54, 77, 94 |
| abstract_inverted_index.congestion | 14 |
| abstract_inverted_index.estimation | 173, 183 |
| abstract_inverted_index.multiagent | 133 |
| abstract_inverted_index.parameters | 144 |
| abstract_inverted_index.selection. | 55, 95, 204 |
| abstract_inverted_index.simulator. | 43 |
| abstract_inverted_index.attractions | 115 |
| abstract_inverted_index.multinomial | 47, 87 |
| abstract_inverted_index.performance | 169 |
| abstract_inverted_index.reproducing | 20 |
| abstract_inverted_index.experiments, | 163 |
| abstract_inverted_index.characteristics | 71, 128 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.16270264 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |