A Modelling Framework towards Solid Oxide Fuel Cell Electrode Microstructure Optimization Article Swipe
Zilin Yan
,
An He
,
Shotaro HARA
,
Naoki Shikazono
·
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.1299/jsmepes.2019.24.c124
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.1299/jsmepes.2019.24.c124
We present a modeling framework which jointly uses discrete element method, kinetic Monte Carlo method, lattice Boltzmann method and artificial neural network to predict the electrochemical performance and degradation rate of solid oxide fuel cell cathode from raw powder. A multi-objective genetic algorithm is used to minimize both the overpotential and degradation rate of the cathode. The Pareto front is obtained for the optimal design of cathode microstructures.
Related Topics
Concepts
Overpotential
Cathode
Solid oxide fuel cell
Microstructure
Materials science
Monte Carlo method
Oxide
Multi-objective optimization
Lattice Boltzmann methods
Genetic algorithm
Raw material
Kinetic Monte Carlo
Electrochemistry
Electrode
Computer science
Biological system
Mathematical optimization
Chemical engineering
Metallurgy
Mechanics
Chemistry
Engineering
Electrical engineering
Physics
Mathematics
Machine learning
Physical chemistry
Statistics
Biology
Organic chemistry
Anode
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1299/jsmepes.2019.24.c124
- OA Status
- diamond
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2997424366
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2997424366Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1299/jsmepes.2019.24.c124Digital Object Identifier
- Title
-
A Modelling Framework towards Solid Oxide Fuel Cell Electrode Microstructure OptimizationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-01-01Full publication date if available
- Authors
-
Zilin Yan, An He, Shotaro HARA, Naoki ShikazonoList of authors in order
- Landing page
-
https://doi.org/10.1299/jsmepes.2019.24.c124Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1299/jsmepes.2019.24.c124Direct OA link when available
- Concepts
-
Overpotential, Cathode, Solid oxide fuel cell, Microstructure, Materials science, Monte Carlo method, Oxide, Multi-objective optimization, Lattice Boltzmann methods, Genetic algorithm, Raw material, Kinetic Monte Carlo, Electrochemistry, Electrode, Computer science, Biological system, Mathematical optimization, Chemical engineering, Metallurgy, Mechanics, Chemistry, Engineering, Electrical engineering, Physics, Mathematics, Machine learning, Physical chemistry, Statistics, Biology, Organic chemistry, AnodeTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2997424366 |
|---|---|
| doi | https://doi.org/10.1299/jsmepes.2019.24.c124 |
| ids.doi | https://doi.org/10.1299/jsmepes.2019.24.c124 |
| ids.mag | 2997424366 |
| ids.openalex | https://openalex.org/W2997424366 |
| fwci | 0.0 |
| type | article |
| title | A Modelling Framework towards Solid Oxide Fuel Cell Electrode Microstructure Optimization |
| biblio.issue | 0 |
| biblio.volume | 2019.24 |
| biblio.last_page | C124 |
| biblio.first_page | C124 |
| topics[0].id | https://openalex.org/T10311 |
| topics[0].field.id | https://openalex.org/fields/25 |
| topics[0].field.display_name | Materials Science |
| topics[0].score | 0.9444000124931335 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2505 |
| topics[0].subfield.display_name | Materials Chemistry |
| topics[0].display_name | Advancements in Solid Oxide Fuel Cells |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C186460083 |
| concepts[0].level | 4 |
| concepts[0].score | 0.8873558640480042 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q333853 |
| concepts[0].display_name | Overpotential |
| concepts[1].id | https://openalex.org/C49110097 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7672279477119446 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q175233 |
| concepts[1].display_name | Cathode |
| concepts[2].id | https://openalex.org/C2778456004 |
| concepts[2].level | 4 |
| concepts[2].score | 0.7617787718772888 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q899633 |
| concepts[2].display_name | Solid oxide fuel cell |
| concepts[3].id | https://openalex.org/C87976508 |
| concepts[3].level | 2 |
| concepts[3].score | 0.7218469977378845 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1498213 |
| concepts[3].display_name | Microstructure |
| concepts[4].id | https://openalex.org/C192562407 |
| concepts[4].level | 0 |
| concepts[4].score | 0.6152666807174683 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[4].display_name | Materials science |
| concepts[5].id | https://openalex.org/C19499675 |
| concepts[5].level | 2 |
| concepts[5].score | 0.556887686252594 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q232207 |
| concepts[5].display_name | Monte Carlo method |
| concepts[6].id | https://openalex.org/C2779851234 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5335004925727844 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q50690 |
| concepts[6].display_name | Oxide |
| concepts[7].id | https://openalex.org/C68781425 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5231924653053284 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2052203 |
| concepts[7].display_name | Multi-objective optimization |
| concepts[8].id | https://openalex.org/C21821499 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5188497304916382 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1807064 |
| concepts[8].display_name | Lattice Boltzmann methods |
| concepts[9].id | https://openalex.org/C8880873 |
| concepts[9].level | 2 |
| concepts[9].score | 0.45506924390792847 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q187787 |
| concepts[9].display_name | Genetic algorithm |
| concepts[10].id | https://openalex.org/C206139338 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4446139931678772 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q192355 |
| concepts[10].display_name | Raw material |
| concepts[11].id | https://openalex.org/C45786274 |
| concepts[11].level | 3 |
| concepts[11].score | 0.4413621425628662 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q3333611 |
| concepts[11].display_name | Kinetic Monte Carlo |
| concepts[12].id | https://openalex.org/C52859227 |
| concepts[12].level | 3 |
| concepts[12].score | 0.4372400641441345 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7877 |
| concepts[12].display_name | Electrochemistry |
| concepts[13].id | https://openalex.org/C17525397 |
| concepts[13].level | 2 |
| concepts[13].score | 0.39515310525894165 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q176140 |
| concepts[13].display_name | Electrode |
| concepts[14].id | https://openalex.org/C41008148 |
| concepts[14].level | 0 |
| concepts[14].score | 0.3922092914581299 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[14].display_name | Computer science |
| concepts[15].id | https://openalex.org/C186060115 |
| concepts[15].level | 1 |
| concepts[15].score | 0.3903859555721283 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q30336093 |
| concepts[15].display_name | Biological system |
| concepts[16].id | https://openalex.org/C126255220 |
| concepts[16].level | 1 |
| concepts[16].score | 0.3522137701511383 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[16].display_name | Mathematical optimization |
| concepts[17].id | https://openalex.org/C42360764 |
| concepts[17].level | 1 |
| concepts[17].score | 0.34687331318855286 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q83588 |
| concepts[17].display_name | Chemical engineering |
| concepts[18].id | https://openalex.org/C191897082 |
| concepts[18].level | 1 |
| concepts[18].score | 0.24879220128059387 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q11467 |
| concepts[18].display_name | Metallurgy |
| concepts[19].id | https://openalex.org/C57879066 |
| concepts[19].level | 1 |
| concepts[19].score | 0.17544138431549072 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q41217 |
| concepts[19].display_name | Mechanics |
| concepts[20].id | https://openalex.org/C185592680 |
| concepts[20].level | 0 |
| concepts[20].score | 0.17203092575073242 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[20].display_name | Chemistry |
| concepts[21].id | https://openalex.org/C127413603 |
| concepts[21].level | 0 |
| concepts[21].score | 0.1419326663017273 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[21].display_name | Engineering |
| concepts[22].id | https://openalex.org/C119599485 |
| concepts[22].level | 1 |
| concepts[22].score | 0.11457675695419312 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[22].display_name | Electrical engineering |
| concepts[23].id | https://openalex.org/C121332964 |
| concepts[23].level | 0 |
| concepts[23].score | 0.10876142978668213 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[23].display_name | Physics |
| concepts[24].id | https://openalex.org/C33923547 |
| concepts[24].level | 0 |
| concepts[24].score | 0.10439810156822205 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[24].display_name | Mathematics |
| concepts[25].id | https://openalex.org/C119857082 |
| concepts[25].level | 1 |
| concepts[25].score | 0.09098085761070251 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[25].display_name | Machine learning |
| concepts[26].id | https://openalex.org/C147789679 |
| concepts[26].level | 1 |
| concepts[26].score | 0.0 |
| concepts[26].wikidata | https://www.wikidata.org/wiki/Q11372 |
| concepts[26].display_name | Physical chemistry |
| concepts[27].id | https://openalex.org/C105795698 |
| concepts[27].level | 1 |
| concepts[27].score | 0.0 |
| concepts[27].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[27].display_name | Statistics |
| concepts[28].id | https://openalex.org/C86803240 |
| concepts[28].level | 0 |
| concepts[28].score | 0.0 |
| concepts[28].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[28].display_name | Biology |
| concepts[29].id | https://openalex.org/C178790620 |
| concepts[29].level | 1 |
| concepts[29].score | 0.0 |
| concepts[29].wikidata | https://www.wikidata.org/wiki/Q11351 |
| concepts[29].display_name | Organic chemistry |
| concepts[30].id | https://openalex.org/C89395315 |
| concepts[30].level | 3 |
| concepts[30].score | 0.0 |
| concepts[30].wikidata | https://www.wikidata.org/wiki/Q181232 |
| concepts[30].display_name | Anode |
| keywords[0].id | https://openalex.org/keywords/overpotential |
| keywords[0].score | 0.8873558640480042 |
| keywords[0].display_name | Overpotential |
| keywords[1].id | https://openalex.org/keywords/cathode |
| keywords[1].score | 0.7672279477119446 |
| keywords[1].display_name | Cathode |
| keywords[2].id | https://openalex.org/keywords/solid-oxide-fuel-cell |
| keywords[2].score | 0.7617787718772888 |
| keywords[2].display_name | Solid oxide fuel cell |
| keywords[3].id | https://openalex.org/keywords/microstructure |
| keywords[3].score | 0.7218469977378845 |
| keywords[3].display_name | Microstructure |
| keywords[4].id | https://openalex.org/keywords/materials-science |
| keywords[4].score | 0.6152666807174683 |
| keywords[4].display_name | Materials science |
| keywords[5].id | https://openalex.org/keywords/monte-carlo-method |
| keywords[5].score | 0.556887686252594 |
| keywords[5].display_name | Monte Carlo method |
| keywords[6].id | https://openalex.org/keywords/oxide |
| keywords[6].score | 0.5335004925727844 |
| keywords[6].display_name | Oxide |
| keywords[7].id | https://openalex.org/keywords/multi-objective-optimization |
| keywords[7].score | 0.5231924653053284 |
| keywords[7].display_name | Multi-objective optimization |
| keywords[8].id | https://openalex.org/keywords/lattice-boltzmann-methods |
| keywords[8].score | 0.5188497304916382 |
| keywords[8].display_name | Lattice Boltzmann methods |
| keywords[9].id | https://openalex.org/keywords/genetic-algorithm |
| keywords[9].score | 0.45506924390792847 |
| keywords[9].display_name | Genetic algorithm |
| keywords[10].id | https://openalex.org/keywords/raw-material |
| keywords[10].score | 0.4446139931678772 |
| keywords[10].display_name | Raw material |
| keywords[11].id | https://openalex.org/keywords/kinetic-monte-carlo |
| keywords[11].score | 0.4413621425628662 |
| keywords[11].display_name | Kinetic Monte Carlo |
| keywords[12].id | https://openalex.org/keywords/electrochemistry |
| keywords[12].score | 0.4372400641441345 |
| keywords[12].display_name | Electrochemistry |
| keywords[13].id | https://openalex.org/keywords/electrode |
| keywords[13].score | 0.39515310525894165 |
| keywords[13].display_name | Electrode |
| keywords[14].id | https://openalex.org/keywords/computer-science |
| keywords[14].score | 0.3922092914581299 |
| keywords[14].display_name | Computer science |
| keywords[15].id | https://openalex.org/keywords/biological-system |
| keywords[15].score | 0.3903859555721283 |
| keywords[15].display_name | Biological system |
| keywords[16].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[16].score | 0.3522137701511383 |
| keywords[16].display_name | Mathematical optimization |
| keywords[17].id | https://openalex.org/keywords/chemical-engineering |
| keywords[17].score | 0.34687331318855286 |
| keywords[17].display_name | Chemical engineering |
| keywords[18].id | https://openalex.org/keywords/metallurgy |
| keywords[18].score | 0.24879220128059387 |
| keywords[18].display_name | Metallurgy |
| keywords[19].id | https://openalex.org/keywords/mechanics |
| keywords[19].score | 0.17544138431549072 |
| keywords[19].display_name | Mechanics |
| keywords[20].id | https://openalex.org/keywords/chemistry |
| keywords[20].score | 0.17203092575073242 |
| keywords[20].display_name | Chemistry |
| keywords[21].id | https://openalex.org/keywords/engineering |
| keywords[21].score | 0.1419326663017273 |
| keywords[21].display_name | Engineering |
| keywords[22].id | https://openalex.org/keywords/electrical-engineering |
| keywords[22].score | 0.11457675695419312 |
| keywords[22].display_name | Electrical engineering |
| keywords[23].id | https://openalex.org/keywords/physics |
| keywords[23].score | 0.10876142978668213 |
| keywords[23].display_name | Physics |
| keywords[24].id | https://openalex.org/keywords/mathematics |
| keywords[24].score | 0.10439810156822205 |
| keywords[24].display_name | Mathematics |
| keywords[25].id | https://openalex.org/keywords/machine-learning |
| keywords[25].score | 0.09098085761070251 |
| keywords[25].display_name | Machine learning |
| language | en |
| locations[0].id | doi:10.1299/jsmepes.2019.24.c124 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210191736 |
| locations[0].source.issn | 1348-0243, 2424-2950 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1348-0243 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Doryoku, Enerugi Gijutsu Shinpojiumu koen ronbunshu/Doryoku, enerugi gijutsu no saizensen koen ronbunshu |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | The Proceedings of the National Symposium on Power and Energy Systems |
| locations[0].landing_page_url | https://doi.org/10.1299/jsmepes.2019.24.c124 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5088810627 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5690-7881 |
| authorships[0].author.display_name | Zilin Yan |
| authorships[0].countries | JP |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I74801974 |
| authorships[0].affiliations[0].raw_affiliation_string | The University of Tokyo |
| authorships[0].institutions[0].id | https://openalex.org/I74801974 |
| authorships[0].institutions[0].ror | https://ror.org/057zh3y96 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I74801974 |
| authorships[0].institutions[0].country_code | JP |
| authorships[0].institutions[0].display_name | The University of Tokyo |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zilin YAN |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | The University of Tokyo |
| authorships[1].author.id | https://openalex.org/A5103009546 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2899-1419 |
| authorships[1].author.display_name | An He |
| authorships[1].countries | JP |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I74801974 |
| authorships[1].affiliations[0].raw_affiliation_string | The University of Tokyo |
| authorships[1].institutions[0].id | https://openalex.org/I74801974 |
| authorships[1].institutions[0].ror | https://ror.org/057zh3y96 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I74801974 |
| authorships[1].institutions[0].country_code | JP |
| authorships[1].institutions[0].display_name | The University of Tokyo |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | An HE |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | The University of Tokyo |
| authorships[2].author.id | https://openalex.org/A5109280344 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Shotaro HARA |
| authorships[2].countries | JP |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I8488066 |
| authorships[2].affiliations[0].raw_affiliation_string | Chiba Institute of Technology |
| authorships[2].institutions[0].id | https://openalex.org/I8488066 |
| authorships[2].institutions[0].ror | https://ror.org/00qwnam72 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I8488066 |
| authorships[2].institutions[0].country_code | JP |
| authorships[2].institutions[0].display_name | Chiba Institute of Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Shotaro HARA |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Chiba Institute of Technology |
| authorships[3].author.id | https://openalex.org/A5075435566 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Naoki Shikazono |
| authorships[3].countries | JP |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I74801974 |
| authorships[3].affiliations[0].raw_affiliation_string | The University of Tokyo |
| authorships[3].institutions[0].id | https://openalex.org/I74801974 |
| authorships[3].institutions[0].ror | https://ror.org/057zh3y96 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I74801974 |
| authorships[3].institutions[0].country_code | JP |
| authorships[3].institutions[0].display_name | The University of Tokyo |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Naoki SHIKAZONO |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | The University of Tokyo |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1299/jsmepes.2019.24.c124 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Modelling Framework towards Solid Oxide Fuel Cell Electrode Microstructure Optimization |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10311 |
| primary_topic.field.id | https://openalex.org/fields/25 |
| primary_topic.field.display_name | Materials Science |
| primary_topic.score | 0.9444000124931335 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2505 |
| primary_topic.subfield.display_name | Materials Chemistry |
| primary_topic.display_name | Advancements in Solid Oxide Fuel Cells |
| related_works | https://openalex.org/W2911308343, https://openalex.org/W2063953512, https://openalex.org/W2891827737, https://openalex.org/W2793579223, https://openalex.org/W2052846173, https://openalex.org/W1992367829, https://openalex.org/W2350678528, https://openalex.org/W2160496617, https://openalex.org/W3160325498, https://openalex.org/W2070132978 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1299/jsmepes.2019.24.c124 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210191736 |
| best_oa_location.source.issn | 1348-0243, 2424-2950 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1348-0243 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Doryoku, Enerugi Gijutsu Shinpojiumu koen ronbunshu/Doryoku, enerugi gijutsu no saizensen koen ronbunshu |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | The Proceedings of the National Symposium on Power and Energy Systems |
| best_oa_location.landing_page_url | https://doi.org/10.1299/jsmepes.2019.24.c124 |
| primary_location.id | doi:10.1299/jsmepes.2019.24.c124 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210191736 |
| primary_location.source.issn | 1348-0243, 2424-2950 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1348-0243 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Doryoku, Enerugi Gijutsu Shinpojiumu koen ronbunshu/Doryoku, enerugi gijutsu no saizensen koen ronbunshu |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | The Proceedings of the National Symposium on Power and Energy Systems |
| primary_location.landing_page_url | https://doi.org/10.1299/jsmepes.2019.24.c124 |
| publication_date | 2019-01-01 |
| publication_year | 2019 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 39 |
| abstract_inverted_index.a | 2 |
| abstract_inverted_index.We | 0 |
| abstract_inverted_index.is | 43, 59 |
| abstract_inverted_index.of | 30, 53, 65 |
| abstract_inverted_index.to | 22, 45 |
| abstract_inverted_index.The | 56 |
| abstract_inverted_index.and | 18, 27, 50 |
| abstract_inverted_index.for | 61 |
| abstract_inverted_index.raw | 37 |
| abstract_inverted_index.the | 24, 48, 54, 62 |
| abstract_inverted_index.both | 47 |
| abstract_inverted_index.cell | 34 |
| abstract_inverted_index.from | 36 |
| abstract_inverted_index.fuel | 33 |
| abstract_inverted_index.rate | 29, 52 |
| abstract_inverted_index.used | 44 |
| abstract_inverted_index.uses | 7 |
| abstract_inverted_index.Carlo | 13 |
| abstract_inverted_index.Monte | 12 |
| abstract_inverted_index.front | 58 |
| abstract_inverted_index.oxide | 32 |
| abstract_inverted_index.solid | 31 |
| abstract_inverted_index.which | 5 |
| abstract_inverted_index.Pareto | 57 |
| abstract_inverted_index.design | 64 |
| abstract_inverted_index.method | 17 |
| abstract_inverted_index.neural | 20 |
| abstract_inverted_index.cathode | 35, 66 |
| abstract_inverted_index.element | 9 |
| abstract_inverted_index.genetic | 41 |
| abstract_inverted_index.jointly | 6 |
| abstract_inverted_index.kinetic | 11 |
| abstract_inverted_index.lattice | 15 |
| abstract_inverted_index.method, | 10, 14 |
| abstract_inverted_index.network | 21 |
| abstract_inverted_index.optimal | 63 |
| abstract_inverted_index.powder. | 38 |
| abstract_inverted_index.predict | 23 |
| abstract_inverted_index.present | 1 |
| abstract_inverted_index.cathode. | 55 |
| abstract_inverted_index.discrete | 8 |
| abstract_inverted_index.minimize | 46 |
| abstract_inverted_index.modeling | 3 |
| abstract_inverted_index.obtained | 60 |
| abstract_inverted_index.Boltzmann | 16 |
| abstract_inverted_index.algorithm | 42 |
| abstract_inverted_index.framework | 4 |
| abstract_inverted_index.artificial | 19 |
| abstract_inverted_index.degradation | 28, 51 |
| abstract_inverted_index.performance | 26 |
| abstract_inverted_index.overpotential | 49 |
| abstract_inverted_index.electrochemical | 25 |
| abstract_inverted_index.multi-objective | 40 |
| abstract_inverted_index.microstructures. | 67 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.12106469 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |