A Modified Dynamic PLS for Quality Related Monitoring of Fractionation Processes Article Swipe
YOU?
·
· 2018
· Open Access
·
· DOI: https://doi.org/10.1016/j.ifacol.2018.09.319
The fractionation process is a typical dynamic process, and practitioners highly pay attention to the quality-related abnormal in the real refining processes. In this paper, a modified dynamic PLS (MDPLS) modeling method and the corresponding process monitoring strategy are proposed. The main contributions of the proposed method are in the following. First, a clear dynamic relation is captured between process data and quality indices. Moreover, the process and quality space are comprehensively divided into dynamic quality-related subspace, static quality-unrelated subspace as well as the residual space for improving the performance of monitoring. Finally, the effectiveness of the proposed algorithm is demonstrated with the data from a real fractionation process.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.ifacol.2018.09.319
- OA Status
- diamond
- Cited By
- 6
- References
- 29
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2896767735
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2896767735Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.ifacol.2018.09.319Digital Object Identifier
- Title
-
A Modified Dynamic PLS for Quality Related Monitoring of Fractionation ProcessesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2018Year of publication
- Publication date
-
2018-01-01Full publication date if available
- Authors
-
Xu Xue, Qiang Liu, Jinliang DingList of authors in order
- Landing page
-
https://doi.org/10.1016/j.ifacol.2018.09.319Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.ifacol.2018.09.319Direct OA link when available
- Concepts
-
Subspace topology, Process (computing), Computer science, Quality (philosophy), Residual, Relation (database), Fractionation, Dynamic data, Data mining, Process engineering, Artificial intelligence, Algorithm, Engineering, Chemistry, Chromatography, Database, Philosophy, Epistemology, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
6Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1, 2022: 2, 2020: 1, 2019: 1, 2018: 1Per-year citation counts (last 5 years)
- References (count)
-
29Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2896767735 |
|---|---|
| doi | https://doi.org/10.1016/j.ifacol.2018.09.319 |
| ids.doi | https://doi.org/10.1016/j.ifacol.2018.09.319 |
| ids.mag | 2896767735 |
| ids.openalex | https://openalex.org/W2896767735 |
| fwci | 0.57194661 |
| type | article |
| title | A Modified Dynamic PLS for Quality Related Monitoring of Fractionation Processes |
| biblio.issue | 18 |
| biblio.volume | 51 |
| biblio.last_page | 320 |
| biblio.first_page | 315 |
| topics[0].id | https://openalex.org/T10876 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2207 |
| topics[0].subfield.display_name | Control and Systems Engineering |
| topics[0].display_name | Fault Detection and Control Systems |
| topics[1].id | https://openalex.org/T10640 |
| topics[1].field.id | https://openalex.org/fields/16 |
| topics[1].field.display_name | Chemistry |
| topics[1].score | 0.9966999888420105 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1602 |
| topics[1].subfield.display_name | Analytical Chemistry |
| topics[1].display_name | Spectroscopy and Chemometric Analyses |
| topics[2].id | https://openalex.org/T12282 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9958000183105469 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2210 |
| topics[2].subfield.display_name | Mechanical Engineering |
| topics[2].display_name | Mineral Processing and Grinding |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C32834561 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8038426637649536 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q660730 |
| concepts[0].display_name | Subspace topology |
| concepts[1].id | https://openalex.org/C98045186 |
| concepts[1].level | 2 |
| concepts[1].score | 0.695846676826477 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[1].display_name | Process (computing) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.641387939453125 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C2779530757 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6306573748588562 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1207505 |
| concepts[3].display_name | Quality (philosophy) |
| concepts[4].id | https://openalex.org/C155512373 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6034444570541382 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q287450 |
| concepts[4].display_name | Residual |
| concepts[5].id | https://openalex.org/C25343380 |
| concepts[5].level | 2 |
| concepts[5].score | 0.576933741569519 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q277521 |
| concepts[5].display_name | Relation (database) |
| concepts[6].id | https://openalex.org/C97428945 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5347729325294495 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q15305109 |
| concepts[6].display_name | Fractionation |
| concepts[7].id | https://openalex.org/C197298091 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4681667983531952 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q5318963 |
| concepts[7].display_name | Dynamic data |
| concepts[8].id | https://openalex.org/C124101348 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4120525121688843 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[8].display_name | Data mining |
| concepts[9].id | https://openalex.org/C21880701 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3215939998626709 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2144042 |
| concepts[9].display_name | Process engineering |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.2740917205810547 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| concepts[11].id | https://openalex.org/C11413529 |
| concepts[11].level | 1 |
| concepts[11].score | 0.22448348999023438 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[11].display_name | Algorithm |
| concepts[12].id | https://openalex.org/C127413603 |
| concepts[12].level | 0 |
| concepts[12].score | 0.13437658548355103 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[12].display_name | Engineering |
| concepts[13].id | https://openalex.org/C185592680 |
| concepts[13].level | 0 |
| concepts[13].score | 0.09160566329956055 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[13].display_name | Chemistry |
| concepts[14].id | https://openalex.org/C43617362 |
| concepts[14].level | 1 |
| concepts[14].score | 0.08522260189056396 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q170050 |
| concepts[14].display_name | Chromatography |
| concepts[15].id | https://openalex.org/C77088390 |
| concepts[15].level | 1 |
| concepts[15].score | 0.056434810161590576 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[15].display_name | Database |
| concepts[16].id | https://openalex.org/C138885662 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[16].display_name | Philosophy |
| concepts[17].id | https://openalex.org/C111472728 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q9471 |
| concepts[17].display_name | Epistemology |
| concepts[18].id | https://openalex.org/C111919701 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[18].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/subspace-topology |
| keywords[0].score | 0.8038426637649536 |
| keywords[0].display_name | Subspace topology |
| keywords[1].id | https://openalex.org/keywords/process |
| keywords[1].score | 0.695846676826477 |
| keywords[1].display_name | Process (computing) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.641387939453125 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/quality |
| keywords[3].score | 0.6306573748588562 |
| keywords[3].display_name | Quality (philosophy) |
| keywords[4].id | https://openalex.org/keywords/residual |
| keywords[4].score | 0.6034444570541382 |
| keywords[4].display_name | Residual |
| keywords[5].id | https://openalex.org/keywords/relation |
| keywords[5].score | 0.576933741569519 |
| keywords[5].display_name | Relation (database) |
| keywords[6].id | https://openalex.org/keywords/fractionation |
| keywords[6].score | 0.5347729325294495 |
| keywords[6].display_name | Fractionation |
| keywords[7].id | https://openalex.org/keywords/dynamic-data |
| keywords[7].score | 0.4681667983531952 |
| keywords[7].display_name | Dynamic data |
| keywords[8].id | https://openalex.org/keywords/data-mining |
| keywords[8].score | 0.4120525121688843 |
| keywords[8].display_name | Data mining |
| keywords[9].id | https://openalex.org/keywords/process-engineering |
| keywords[9].score | 0.3215939998626709 |
| keywords[9].display_name | Process engineering |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.2740917205810547 |
| keywords[10].display_name | Artificial intelligence |
| keywords[11].id | https://openalex.org/keywords/algorithm |
| keywords[11].score | 0.22448348999023438 |
| keywords[11].display_name | Algorithm |
| keywords[12].id | https://openalex.org/keywords/engineering |
| keywords[12].score | 0.13437658548355103 |
| keywords[12].display_name | Engineering |
| keywords[13].id | https://openalex.org/keywords/chemistry |
| keywords[13].score | 0.09160566329956055 |
| keywords[13].display_name | Chemistry |
| keywords[14].id | https://openalex.org/keywords/chromatography |
| keywords[14].score | 0.08522260189056396 |
| keywords[14].display_name | Chromatography |
| keywords[15].id | https://openalex.org/keywords/database |
| keywords[15].score | 0.056434810161590576 |
| keywords[15].display_name | Database |
| language | en |
| locations[0].id | doi:10.1016/j.ifacol.2018.09.319 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2898405271 |
| locations[0].source.issn | 2405-8963, 2405-8971 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2405-8963 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | IFAC-PapersOnLine |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IFAC-PapersOnLine |
| locations[0].landing_page_url | https://doi.org/10.1016/j.ifacol.2018.09.319 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5101579089 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2309-1326 |
| authorships[0].author.display_name | Xu Xue |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I9224756 |
| authorships[0].affiliations[0].raw_affiliation_string | State Key of Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang 110819, China |
| authorships[0].institutions[0].id | https://openalex.org/I9224756 |
| authorships[0].institutions[0].ror | https://ror.org/03awzbc87 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I9224756 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Northeastern University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xue Xu |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | State Key of Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang 110819, China |
| authorships[1].author.id | https://openalex.org/A5057648803 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1037-2185 |
| authorships[1].author.display_name | Qiang Liu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I9224756 |
| authorships[1].affiliations[0].raw_affiliation_string | State Key of Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang 110819, China |
| authorships[1].institutions[0].id | https://openalex.org/I9224756 |
| authorships[1].institutions[0].ror | https://ror.org/03awzbc87 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I9224756 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Northeastern University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Qiang Liu |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | State Key of Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang 110819, China |
| authorships[2].author.id | https://openalex.org/A5022740106 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3735-0672 |
| authorships[2].author.display_name | Jinliang Ding |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I9224756 |
| authorships[2].affiliations[0].raw_affiliation_string | State Key of Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang 110819, China |
| authorships[2].institutions[0].id | https://openalex.org/I9224756 |
| authorships[2].institutions[0].ror | https://ror.org/03awzbc87 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I9224756 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Northeastern University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Jinliang Ding |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | State Key of Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang 110819, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.ifacol.2018.09.319 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Modified Dynamic PLS for Quality Related Monitoring of Fractionation Processes |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10876 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2207 |
| primary_topic.subfield.display_name | Control and Systems Engineering |
| primary_topic.display_name | Fault Detection and Control Systems |
| related_works | https://openalex.org/W4288769606, https://openalex.org/W2049020435, https://openalex.org/W2973451922, https://openalex.org/W2319833224, https://openalex.org/W3094412894, https://openalex.org/W2045706277, https://openalex.org/W1967456324, https://openalex.org/W4226044290, https://openalex.org/W2528512298, https://openalex.org/W2347810345 |
| cited_by_count | 6 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2022 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2020 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2019 |
| counts_by_year[3].cited_by_count | 1 |
| counts_by_year[4].year | 2018 |
| counts_by_year[4].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1016/j.ifacol.2018.09.319 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2898405271 |
| best_oa_location.source.issn | 2405-8963, 2405-8971 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2405-8963 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | IFAC-PapersOnLine |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IFAC-PapersOnLine |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.ifacol.2018.09.319 |
| primary_location.id | doi:10.1016/j.ifacol.2018.09.319 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2898405271 |
| primary_location.source.issn | 2405-8963, 2405-8971 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2405-8963 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | IFAC-PapersOnLine |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IFAC-PapersOnLine |
| primary_location.landing_page_url | https://doi.org/10.1016/j.ifacol.2018.09.319 |
| publication_date | 2018-01-01 |
| publication_year | 2018 |
| referenced_works | https://openalex.org/W2006971615, https://openalex.org/W1984672166, https://openalex.org/W2322097696, https://openalex.org/W2323630342, https://openalex.org/W2610909696, https://openalex.org/W2063823978, https://openalex.org/W2531231238, https://openalex.org/W2051940462, https://openalex.org/W2766347217, https://openalex.org/W2167423684, https://openalex.org/W2140327685, https://openalex.org/W2083856839, https://openalex.org/W2588306484, https://openalex.org/W2731325468, https://openalex.org/W2014894054, https://openalex.org/W6696704441, https://openalex.org/W2001255689, https://openalex.org/W1990283595, https://openalex.org/W2057283314, https://openalex.org/W2583392637, https://openalex.org/W2158863190, https://openalex.org/W1966089218, https://openalex.org/W2050274333, https://openalex.org/W1976251851, https://openalex.org/W2194542308, https://openalex.org/W2169347809, https://openalex.org/W2020737422, https://openalex.org/W1845002809, https://openalex.org/W2291019070 |
| referenced_works_count | 29 |
| abstract_inverted_index.a | 4, 25, 52, 105 |
| abstract_inverted_index.In | 22 |
| abstract_inverted_index.as | 80, 82 |
| abstract_inverted_index.in | 17, 48 |
| abstract_inverted_index.is | 3, 56, 99 |
| abstract_inverted_index.of | 43, 90, 95 |
| abstract_inverted_index.to | 13 |
| abstract_inverted_index.PLS | 28 |
| abstract_inverted_index.The | 0, 40 |
| abstract_inverted_index.and | 8, 32, 61, 67 |
| abstract_inverted_index.are | 38, 47, 70 |
| abstract_inverted_index.for | 86 |
| abstract_inverted_index.pay | 11 |
| abstract_inverted_index.the | 14, 18, 33, 44, 49, 65, 83, 88, 93, 96, 102 |
| abstract_inverted_index.data | 60, 103 |
| abstract_inverted_index.from | 104 |
| abstract_inverted_index.into | 73 |
| abstract_inverted_index.main | 41 |
| abstract_inverted_index.real | 19, 106 |
| abstract_inverted_index.this | 23 |
| abstract_inverted_index.well | 81 |
| abstract_inverted_index.with | 101 |
| abstract_inverted_index.clear | 53 |
| abstract_inverted_index.space | 69, 85 |
| abstract_inverted_index.First, | 51 |
| abstract_inverted_index.highly | 10 |
| abstract_inverted_index.method | 31, 46 |
| abstract_inverted_index.paper, | 24 |
| abstract_inverted_index.static | 77 |
| abstract_inverted_index.(MDPLS) | 29 |
| abstract_inverted_index.between | 58 |
| abstract_inverted_index.divided | 72 |
| abstract_inverted_index.dynamic | 6, 27, 54, 74 |
| abstract_inverted_index.process | 2, 35, 59, 66 |
| abstract_inverted_index.quality | 62, 68 |
| abstract_inverted_index.typical | 5 |
| abstract_inverted_index.Finally, | 92 |
| abstract_inverted_index.abnormal | 16 |
| abstract_inverted_index.captured | 57 |
| abstract_inverted_index.indices. | 63 |
| abstract_inverted_index.modeling | 30 |
| abstract_inverted_index.modified | 26 |
| abstract_inverted_index.process, | 7 |
| abstract_inverted_index.process. | 108 |
| abstract_inverted_index.proposed | 45, 97 |
| abstract_inverted_index.refining | 20 |
| abstract_inverted_index.relation | 55 |
| abstract_inverted_index.residual | 84 |
| abstract_inverted_index.strategy | 37 |
| abstract_inverted_index.subspace | 79 |
| abstract_inverted_index.Moreover, | 64 |
| abstract_inverted_index.algorithm | 98 |
| abstract_inverted_index.attention | 12 |
| abstract_inverted_index.improving | 87 |
| abstract_inverted_index.proposed. | 39 |
| abstract_inverted_index.subspace, | 76 |
| abstract_inverted_index.following. | 50 |
| abstract_inverted_index.monitoring | 36 |
| abstract_inverted_index.processes. | 21 |
| abstract_inverted_index.monitoring. | 91 |
| abstract_inverted_index.performance | 89 |
| abstract_inverted_index.demonstrated | 100 |
| abstract_inverted_index.contributions | 42 |
| abstract_inverted_index.corresponding | 34 |
| abstract_inverted_index.effectiveness | 94 |
| abstract_inverted_index.fractionation | 1, 107 |
| abstract_inverted_index.practitioners | 9 |
| abstract_inverted_index.comprehensively | 71 |
| abstract_inverted_index.quality-related | 15, 75 |
| abstract_inverted_index.quality-unrelated | 78 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5057648803, https://openalex.org/A5101579089, https://openalex.org/A5022740106 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I9224756 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.46000000834465027 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile.value | 0.6826516 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |