A Multi-Agent Closed-Loop Decision-Making Framework for Joint Forecasting and Bidding in Electricity Spot Markets Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/en18246486
With increasing renewable energy integration, electricity spot markets exhibit high volatility and uncertainty, making it difficult to balance profit and risk. To address this challenge, this paper proposes Joint (Version 1.0), a multi-agent closed-loop framework that integrates forecasting, strategy, and feedback for coordinated decision-making. The Prediction Agent learns statistical patterns of price spreads to generate distributional forecasts, directional probabilities, and extreme-value indicators; the Strategy Agent adaptively maps these signals into executable bidding ratios through a hybrid mechanism; and the Feedback Agent incorporates settlement results for performance evaluation, CVaR-based risk control, and preference-driven optimization. These agents form a dynamic “forecast–strategy–feedback” loop enabling self-improving trading. Experimental results show that Joint achieves a monthly profit of 146,933.46 CNY with strong classification performance (Precision = 53.25%, Recall = 40.45%, AA = 56.05%, SWA = 57.36%), and the complete model in ablation experiments reaches 157,746.64 CNY, demonstrating the indispensable contributions of each component and confirming its robustness and practical value in volatile electricity spot markets.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/en18246486
- https://www.mdpi.com/1996-1073/18/24/6486/pdf?version=1765448593
- OA Status
- gold
- References
- 20
- OpenAlex ID
- https://openalex.org/W4417229174
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4417229174Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/en18246486Digital Object Identifier
- Title
-
A Multi-Agent Closed-Loop Decision-Making Framework for Joint Forecasting and Bidding in Electricity Spot MarketsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-12-11Full publication date if available
- Authors
-
Shicheng Zhang, W. C. Deng, Y.Y. Zhang, Zhijun Jing, Ning Guo, Jiaxin Yu, Wang Bo, Liao MeiList of authors in order
- Landing page
-
https://doi.org/10.3390/en18246486Publisher landing page
- PDF URL
-
https://www.mdpi.com/1996-1073/18/24/6486/pdf?version=1765448593Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1996-1073/18/24/6486/pdf?version=1765448593Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
20Number of works referenced by this work
Full payload
| id | https://openalex.org/W4417229174 |
|---|---|
| doi | https://doi.org/10.3390/en18246486 |
| ids.doi | https://doi.org/10.3390/en18246486 |
| ids.openalex | https://openalex.org/W4417229174 |
| fwci | |
| type | article |
| title | A Multi-Agent Closed-Loop Decision-Making Framework for Joint Forecasting and Bidding in Electricity Spot Markets |
| biblio.issue | 24 |
| biblio.volume | 18 |
| biblio.last_page | 6486 |
| biblio.first_page | 6486 |
| is_xpac | False |
| apc_list.value | 2200 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2382 |
| apc_paid.value | 2200 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2382 |
| language | en |
| locations[0].id | doi:10.3390/en18246486 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S198098182 |
| locations[0].source.issn | 1996-1073 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1996-1073 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Energies |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1996-1073/18/24/6486/pdf?version=1765448593 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Energies |
| locations[0].landing_page_url | https://doi.org/10.3390/en18246486 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5073628117 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9994-1385 |
| authorships[0].author.display_name | Shicheng Zhang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210123265 |
| authorships[0].affiliations[0].raw_affiliation_string | Jiangsu Institute of Smart Energy Utilization and Low-Carbon Technologies Co., Ltd., Nanjing 211168, China |
| authorships[0].institutions[0].id | https://openalex.org/I4210123265 |
| authorships[0].institutions[0].ror | https://ror.org/021atz428 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210123265 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | National Institute of Clean and Low-Carbon Energy |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Shicheng Zhang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Jiangsu Institute of Smart Energy Utilization and Low-Carbon Technologies Co., Ltd., Nanjing 211168, China |
| authorships[1].author.id | https://openalex.org/A5080545990 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4782-1696 |
| authorships[1].author.display_name | W. C. Deng |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210134236 |
| authorships[1].affiliations[0].raw_affiliation_string | Shenzhen Shenneng Innovation Technology Co., Ltd., Shenzhen 518028, China |
| authorships[1].institutions[0].id | https://openalex.org/I4210134236 |
| authorships[1].institutions[0].ror | https://ror.org/03b252479 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210134236 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Shenzhen Planck Innovation (China) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Wangli Deng |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Shenzhen Shenneng Innovation Technology Co., Ltd., Shenzhen 518028, China |
| authorships[2].author.id | https://openalex.org/A5084886016 |
| authorships[2].author.orcid | https://orcid.org/0009-0008-0816-150X |
| authorships[2].author.display_name | Y.Y. Zhang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210123265 |
| authorships[2].affiliations[0].raw_affiliation_string | Jiangsu Institute of Smart Energy Utilization and Low-Carbon Technologies Co., Ltd., Nanjing 211168, China |
| authorships[2].institutions[0].id | https://openalex.org/I4210123265 |
| authorships[2].institutions[0].ror | https://ror.org/021atz428 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210123265 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | National Institute of Clean and Low-Carbon Energy |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yuqin Zhang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Jiangsu Institute of Smart Energy Utilization and Low-Carbon Technologies Co., Ltd., Nanjing 211168, China |
| authorships[3].author.id | https://openalex.org/A5113178060 |
| authorships[3].author.orcid | https://orcid.org/0009-0004-2109-0903 |
| authorships[3].author.display_name | Zhijun Jing |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I163340411 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Electrical and Power Engineering, Hohai University, Nanjing 211100, China |
| authorships[3].institutions[0].id | https://openalex.org/I163340411 |
| authorships[3].institutions[0].ror | https://ror.org/01wd4xt90 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I163340411 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Hohai University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zhijun Jing |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Electrical and Power Engineering, Hohai University, Nanjing 211100, China |
| authorships[4].author.id | https://openalex.org/A5106403994 |
| authorships[4].author.orcid | https://orcid.org/0009-0009-9695-8179 |
| authorships[4].author.display_name | Ning Guo |
| authorships[4].affiliations[0].raw_affiliation_string | Electric Power Research Institute, State Grid Jiangsu Electric Power Co., Ltd., Nanjing 211103, China |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Ning Guo |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Electric Power Research Institute, State Grid Jiangsu Electric Power Co., Ltd., Nanjing 211103, China |
| authorships[5].author.id | https://openalex.org/A5041678181 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-3578-5760 |
| authorships[5].author.display_name | Jiaxin Yu |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I153473198 |
| authorships[5].affiliations[0].raw_affiliation_string | College of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China |
| authorships[5].affiliations[1].raw_affiliation_string | Electric Power Research Institute, State Grid Jiangsu Electric Power Co., Ltd., Nanjing 211103, China |
| authorships[5].institutions[0].id | https://openalex.org/I153473198 |
| authorships[5].institutions[0].ror | https://ror.org/04qr5t414 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I153473198 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | North China Electric Power University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Jianyu Yu |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | College of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China, Electric Power Research Institute, State Grid Jiangsu Electric Power Co., Ltd., Nanjing 211103, China |
| authorships[6].author.id | https://openalex.org/A5101673989 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-1604-525X |
| authorships[6].author.display_name | Wang Bo |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I163340411 |
| authorships[6].affiliations[0].raw_affiliation_string | School of Electrical and Power Engineering, Hohai University, Nanjing 211100, China |
| authorships[6].institutions[0].id | https://openalex.org/I163340411 |
| authorships[6].institutions[0].ror | https://ror.org/01wd4xt90 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I163340411 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Hohai University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Bo Wang |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | School of Electrical and Power Engineering, Hohai University, Nanjing 211100, China |
| authorships[7].author.id | https://openalex.org/A5046583779 |
| authorships[7].author.orcid | https://orcid.org/0009-0005-4283-6951 |
| authorships[7].author.display_name | Liao Mei |
| authorships[7].affiliations[0].raw_affiliation_string | Shenzhen Energy Group Co., Ltd., Shenzhen 518000, China |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Mei Liao |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Shenzhen Energy Group Co., Ltd., Shenzhen 518000, China |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1996-1073/18/24/6486/pdf?version=1765448593 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-12-11T00:00:00 |
| display_name | A Multi-Agent Closed-Loop Decision-Making Framework for Joint Forecasting and Bidding in Electricity Spot Markets |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-12T23:16:27.785689 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.3390/en18246486 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S198098182 |
| best_oa_location.source.issn | 1996-1073 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1996-1073 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Energies |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1996-1073/18/24/6486/pdf?version=1765448593 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Energies |
| best_oa_location.landing_page_url | https://doi.org/10.3390/en18246486 |
| primary_location.id | doi:10.3390/en18246486 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S198098182 |
| primary_location.source.issn | 1996-1073 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1996-1073 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Energies |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1996-1073/18/24/6486/pdf?version=1765448593 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Energies |
| primary_location.landing_page_url | https://doi.org/10.3390/en18246486 |
| publication_date | 2025-12-11 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W1907631878, https://openalex.org/W4223502445, https://openalex.org/W2114196548, https://openalex.org/W2089217930, https://openalex.org/W2139290304, https://openalex.org/W2084724629, https://openalex.org/W4411243824, https://openalex.org/W4297961870, https://openalex.org/W4384562797, https://openalex.org/W3089489220, https://openalex.org/W4399878080, https://openalex.org/W4406602062, https://openalex.org/W4402271821, https://openalex.org/W4410005466, https://openalex.org/W4400227404, https://openalex.org/W4410162231, https://openalex.org/W4318479857, https://openalex.org/W2625224297, https://openalex.org/W2295598076, https://openalex.org/W2338714606 |
| referenced_works_count | 20 |
| abstract_inverted_index.= | 120, 123, 126, 129 |
| abstract_inverted_index.a | 31, 74, 96, 109 |
| abstract_inverted_index.AA | 125 |
| abstract_inverted_index.To | 21 |
| abstract_inverted_index.in | 135, 155 |
| abstract_inverted_index.it | 14 |
| abstract_inverted_index.of | 50, 112, 145 |
| abstract_inverted_index.to | 16, 53 |
| abstract_inverted_index.CNY | 114 |
| abstract_inverted_index.SWA | 128 |
| abstract_inverted_index.The | 44 |
| abstract_inverted_index.and | 11, 19, 39, 59, 77, 90, 131, 148, 152 |
| abstract_inverted_index.for | 41, 84 |
| abstract_inverted_index.its | 150 |
| abstract_inverted_index.the | 62, 78, 132, 142 |
| abstract_inverted_index.CNY, | 140 |
| abstract_inverted_index.With | 0 |
| abstract_inverted_index.each | 146 |
| abstract_inverted_index.form | 95 |
| abstract_inverted_index.high | 9 |
| abstract_inverted_index.into | 69 |
| abstract_inverted_index.loop | 99 |
| abstract_inverted_index.maps | 66 |
| abstract_inverted_index.risk | 88 |
| abstract_inverted_index.show | 105 |
| abstract_inverted_index.spot | 6, 158 |
| abstract_inverted_index.that | 35, 106 |
| abstract_inverted_index.this | 23, 25 |
| abstract_inverted_index.with | 115 |
| abstract_inverted_index.1.0), | 30 |
| abstract_inverted_index.Agent | 46, 64, 80 |
| abstract_inverted_index.Joint | 28, 107 |
| abstract_inverted_index.These | 93 |
| abstract_inverted_index.model | 134 |
| abstract_inverted_index.paper | 26 |
| abstract_inverted_index.price | 51 |
| abstract_inverted_index.risk. | 20 |
| abstract_inverted_index.these | 67 |
| abstract_inverted_index.value | 154 |
| abstract_inverted_index.Recall | 122 |
| abstract_inverted_index.agents | 94 |
| abstract_inverted_index.energy | 3 |
| abstract_inverted_index.hybrid | 75 |
| abstract_inverted_index.learns | 47 |
| abstract_inverted_index.making | 13 |
| abstract_inverted_index.profit | 18, 111 |
| abstract_inverted_index.ratios | 72 |
| abstract_inverted_index.strong | 116 |
| abstract_inverted_index.40.45%, | 124 |
| abstract_inverted_index.53.25%, | 121 |
| abstract_inverted_index.56.05%, | 127 |
| abstract_inverted_index.address | 22 |
| abstract_inverted_index.balance | 17 |
| abstract_inverted_index.bidding | 71 |
| abstract_inverted_index.dynamic | 97 |
| abstract_inverted_index.exhibit | 8 |
| abstract_inverted_index.markets | 7 |
| abstract_inverted_index.monthly | 110 |
| abstract_inverted_index.reaches | 138 |
| abstract_inverted_index.results | 83, 104 |
| abstract_inverted_index.signals | 68 |
| abstract_inverted_index.spreads | 52 |
| abstract_inverted_index.through | 73 |
| abstract_inverted_index.(Version | 29 |
| abstract_inverted_index.57.36%), | 130 |
| abstract_inverted_index.Feedback | 79 |
| abstract_inverted_index.Strategy | 63 |
| abstract_inverted_index.ablation | 136 |
| abstract_inverted_index.achieves | 108 |
| abstract_inverted_index.complete | 133 |
| abstract_inverted_index.control, | 89 |
| abstract_inverted_index.enabling | 100 |
| abstract_inverted_index.feedback | 40 |
| abstract_inverted_index.generate | 54 |
| abstract_inverted_index.markets. | 159 |
| abstract_inverted_index.patterns | 49 |
| abstract_inverted_index.proposes | 27 |
| abstract_inverted_index.trading. | 102 |
| abstract_inverted_index.volatile | 156 |
| abstract_inverted_index.component | 147 |
| abstract_inverted_index.difficult | 15 |
| abstract_inverted_index.framework | 34 |
| abstract_inverted_index.practical | 153 |
| abstract_inverted_index.renewable | 2 |
| abstract_inverted_index.strategy, | 38 |
| abstract_inverted_index.(Precision | 119 |
| abstract_inverted_index.146,933.46 | 113 |
| abstract_inverted_index.157,746.64 | 139 |
| abstract_inverted_index.CVaR-based | 87 |
| abstract_inverted_index.Prediction | 45 |
| abstract_inverted_index.adaptively | 65 |
| abstract_inverted_index.challenge, | 24 |
| abstract_inverted_index.confirming | 149 |
| abstract_inverted_index.executable | 70 |
| abstract_inverted_index.forecasts, | 56 |
| abstract_inverted_index.increasing | 1 |
| abstract_inverted_index.integrates | 36 |
| abstract_inverted_index.mechanism; | 76 |
| abstract_inverted_index.robustness | 151 |
| abstract_inverted_index.settlement | 82 |
| abstract_inverted_index.volatility | 10 |
| abstract_inverted_index.closed-loop | 33 |
| abstract_inverted_index.coordinated | 42 |
| abstract_inverted_index.directional | 57 |
| abstract_inverted_index.electricity | 5, 157 |
| abstract_inverted_index.evaluation, | 86 |
| abstract_inverted_index.experiments | 137 |
| abstract_inverted_index.indicators; | 61 |
| abstract_inverted_index.multi-agent | 32 |
| abstract_inverted_index.performance | 85, 118 |
| abstract_inverted_index.statistical | 48 |
| abstract_inverted_index.Experimental | 103 |
| abstract_inverted_index.forecasting, | 37 |
| abstract_inverted_index.incorporates | 81 |
| abstract_inverted_index.integration, | 4 |
| abstract_inverted_index.uncertainty, | 12 |
| abstract_inverted_index.contributions | 144 |
| abstract_inverted_index.demonstrating | 141 |
| abstract_inverted_index.extreme-value | 60 |
| abstract_inverted_index.indispensable | 143 |
| abstract_inverted_index.optimization. | 92 |
| abstract_inverted_index.classification | 117 |
| abstract_inverted_index.distributional | 55 |
| abstract_inverted_index.probabilities, | 58 |
| abstract_inverted_index.self-improving | 101 |
| abstract_inverted_index.decision-making. | 43 |
| abstract_inverted_index.preference-driven | 91 |
| abstract_inverted_index.“forecast–strategy–feedback” | 98 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile |