A multi-attention and depthwise separable convolution network for medical image segmentation Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1016/j.neucom.2023.126970
Automatic medical image segmentation method is highly needed to help experts in lesion segmentation. The deep learning technology emerging has profoundly driven the development of medical image segmentation. While U-Net and attention mechanisms are widely utilized in this field, the application of attention, albeit successful in natural scene image segmentation, tends to inflate the number of model parameters and neglects the potential for feature fusion between different convolutional layers. In response to these challenges, we present the Multi-Attention and Depthwise Separable Convolution U-Net (MDSU-Net), designed to enhance feature extraction. The multi-attention aspect of our framework integrates dual attention and attention gates, adeptly capturing rich contextual details and seamlessly fusing features across diverse convolutional layers. Additionally, our encoder integrates a depthwise separable convolution layer, streamlining the model's complexity without sacrificing its efficacy, ensuring versatility across various segmentation tasks. The results demonstrate that our method outperforms state-of-the-art across three diverse medical image datasets.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.neucom.2023.126970
- OA Status
- hybrid
- Cited By
- 39
- References
- 65
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4388011824
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4388011824Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.neucom.2023.126970Digital Object Identifier
- Title
-
A multi-attention and depthwise separable convolution network for medical image segmentationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-10-29Full publication date if available
- Authors
-
Yuxiang Zhou, Xin Kang, Fuji Ren, Huimin Lu, Satoshi Nakagawa, Shan XiaoList of authors in order
- Landing page
-
https://doi.org/10.1016/j.neucom.2023.126970Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.neucom.2023.126970Direct OA link when available
- Concepts
-
Computer science, Artificial intelligence, Segmentation, Convolution (computer science), Convolutional neural network, Feature (linguistics), Encoder, Image segmentation, Pattern recognition (psychology), Field (mathematics), Deep learning, Image (mathematics), Feature extraction, Separable space, Segmentation-based object categorization, Scale-space segmentation, Computer vision, Artificial neural network, Mathematics, Operating system, Philosophy, Linguistics, Pure mathematics, Mathematical analysisTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
39Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 24, 2024: 15Per-year citation counts (last 5 years)
- References (count)
-
65Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4388011824 |
|---|---|
| doi | https://doi.org/10.1016/j.neucom.2023.126970 |
| ids.doi | https://doi.org/10.1016/j.neucom.2023.126970 |
| ids.openalex | https://openalex.org/W4388011824 |
| fwci | 7.09676526 |
| type | article |
| title | A multi-attention and depthwise separable convolution network for medical image segmentation |
| awards[0].id | https://openalex.org/G701389233 |
| awards[0].funder_id | https://openalex.org/F4320334764 |
| awards[0].display_name | |
| awards[0].funder_award_id | 19K20345 |
| awards[0].funder_display_name | Japan Society for the Promotion of Science |
| awards[1].id | https://openalex.org/G3684880427 |
| awards[1].funder_id | https://openalex.org/F4320334764 |
| awards[1].display_name | |
| awards[1].funder_award_id | 19H04215 |
| awards[1].funder_display_name | Japan Society for the Promotion of Science |
| biblio.issue | |
| biblio.volume | 564 |
| biblio.last_page | 126970 |
| biblio.first_page | 126970 |
| topics[0].id | https://openalex.org/T10036 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Neural Network Applications |
| topics[1].id | https://openalex.org/T12422 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9991999864578247 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | Radiomics and Machine Learning in Medical Imaging |
| topics[2].id | https://openalex.org/T11775 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9987000226974487 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2741 |
| topics[2].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[2].display_name | COVID-19 diagnosis using AI |
| funders[0].id | https://openalex.org/F4320334764 |
| funders[0].ror | https://ror.org/00hhkn466 |
| funders[0].display_name | Japan Society for the Promotion of Science |
| is_xpac | False |
| apc_list.value | 2470 |
| apc_list.currency | USD |
| apc_list.value_usd | 2470 |
| apc_paid.value | 2470 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2470 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8420612812042236 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.748771607875824 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C89600930 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7465344071388245 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[2].display_name | Segmentation |
| concepts[3].id | https://openalex.org/C45347329 |
| concepts[3].level | 3 |
| concepts[3].score | 0.6791703701019287 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5166604 |
| concepts[3].display_name | Convolution (computer science) |
| concepts[4].id | https://openalex.org/C81363708 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5754817724227905 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[4].display_name | Convolutional neural network |
| concepts[5].id | https://openalex.org/C2776401178 |
| concepts[5].level | 2 |
| concepts[5].score | 0.530530571937561 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[5].display_name | Feature (linguistics) |
| concepts[6].id | https://openalex.org/C118505674 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5122389197349548 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q42586063 |
| concepts[6].display_name | Encoder |
| concepts[7].id | https://openalex.org/C124504099 |
| concepts[7].level | 3 |
| concepts[7].score | 0.5109056830406189 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q56933 |
| concepts[7].display_name | Image segmentation |
| concepts[8].id | https://openalex.org/C153180895 |
| concepts[8].level | 2 |
| concepts[8].score | 0.49670034646987915 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[8].display_name | Pattern recognition (psychology) |
| concepts[9].id | https://openalex.org/C9652623 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4714570641517639 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q190109 |
| concepts[9].display_name | Field (mathematics) |
| concepts[10].id | https://openalex.org/C108583219 |
| concepts[10].level | 2 |
| concepts[10].score | 0.470829039812088 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[10].display_name | Deep learning |
| concepts[11].id | https://openalex.org/C115961682 |
| concepts[11].level | 2 |
| concepts[11].score | 0.46172088384628296 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[11].display_name | Image (mathematics) |
| concepts[12].id | https://openalex.org/C52622490 |
| concepts[12].level | 2 |
| concepts[12].score | 0.43342986702919006 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[12].display_name | Feature extraction |
| concepts[13].id | https://openalex.org/C70710897 |
| concepts[13].level | 2 |
| concepts[13].score | 0.42707863450050354 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q680081 |
| concepts[13].display_name | Separable space |
| concepts[14].id | https://openalex.org/C25694479 |
| concepts[14].level | 5 |
| concepts[14].score | 0.4186931848526001 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7446278 |
| concepts[14].display_name | Segmentation-based object categorization |
| concepts[15].id | https://openalex.org/C65885262 |
| concepts[15].level | 4 |
| concepts[15].score | 0.40638887882232666 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7429708 |
| concepts[15].display_name | Scale-space segmentation |
| concepts[16].id | https://openalex.org/C31972630 |
| concepts[16].level | 1 |
| concepts[16].score | 0.39919692277908325 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[16].display_name | Computer vision |
| concepts[17].id | https://openalex.org/C50644808 |
| concepts[17].level | 2 |
| concepts[17].score | 0.2409362494945526 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[17].display_name | Artificial neural network |
| concepts[18].id | https://openalex.org/C33923547 |
| concepts[18].level | 0 |
| concepts[18].score | 0.07069534063339233 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[18].display_name | Mathematics |
| concepts[19].id | https://openalex.org/C111919701 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[19].display_name | Operating system |
| concepts[20].id | https://openalex.org/C138885662 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[20].display_name | Philosophy |
| concepts[21].id | https://openalex.org/C41895202 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[21].display_name | Linguistics |
| concepts[22].id | https://openalex.org/C202444582 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[22].display_name | Pure mathematics |
| concepts[23].id | https://openalex.org/C134306372 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[23].display_name | Mathematical analysis |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8420612812042236 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.748771607875824 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/segmentation |
| keywords[2].score | 0.7465344071388245 |
| keywords[2].display_name | Segmentation |
| keywords[3].id | https://openalex.org/keywords/convolution |
| keywords[3].score | 0.6791703701019287 |
| keywords[3].display_name | Convolution (computer science) |
| keywords[4].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[4].score | 0.5754817724227905 |
| keywords[4].display_name | Convolutional neural network |
| keywords[5].id | https://openalex.org/keywords/feature |
| keywords[5].score | 0.530530571937561 |
| keywords[5].display_name | Feature (linguistics) |
| keywords[6].id | https://openalex.org/keywords/encoder |
| keywords[6].score | 0.5122389197349548 |
| keywords[6].display_name | Encoder |
| keywords[7].id | https://openalex.org/keywords/image-segmentation |
| keywords[7].score | 0.5109056830406189 |
| keywords[7].display_name | Image segmentation |
| keywords[8].id | https://openalex.org/keywords/pattern-recognition |
| keywords[8].score | 0.49670034646987915 |
| keywords[8].display_name | Pattern recognition (psychology) |
| keywords[9].id | https://openalex.org/keywords/field |
| keywords[9].score | 0.4714570641517639 |
| keywords[9].display_name | Field (mathematics) |
| keywords[10].id | https://openalex.org/keywords/deep-learning |
| keywords[10].score | 0.470829039812088 |
| keywords[10].display_name | Deep learning |
| keywords[11].id | https://openalex.org/keywords/image |
| keywords[11].score | 0.46172088384628296 |
| keywords[11].display_name | Image (mathematics) |
| keywords[12].id | https://openalex.org/keywords/feature-extraction |
| keywords[12].score | 0.43342986702919006 |
| keywords[12].display_name | Feature extraction |
| keywords[13].id | https://openalex.org/keywords/separable-space |
| keywords[13].score | 0.42707863450050354 |
| keywords[13].display_name | Separable space |
| keywords[14].id | https://openalex.org/keywords/segmentation-based-object-categorization |
| keywords[14].score | 0.4186931848526001 |
| keywords[14].display_name | Segmentation-based object categorization |
| keywords[15].id | https://openalex.org/keywords/scale-space-segmentation |
| keywords[15].score | 0.40638887882232666 |
| keywords[15].display_name | Scale-space segmentation |
| keywords[16].id | https://openalex.org/keywords/computer-vision |
| keywords[16].score | 0.39919692277908325 |
| keywords[16].display_name | Computer vision |
| keywords[17].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[17].score | 0.2409362494945526 |
| keywords[17].display_name | Artificial neural network |
| keywords[18].id | https://openalex.org/keywords/mathematics |
| keywords[18].score | 0.07069534063339233 |
| keywords[18].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1016/j.neucom.2023.126970 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S45693802 |
| locations[0].source.issn | 0925-2312, 1872-8286 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0925-2312 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Neurocomputing |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Neurocomputing |
| locations[0].landing_page_url | https://doi.org/10.1016/j.neucom.2023.126970 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5038656568 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7538-7754 |
| authorships[0].author.display_name | Yuxiang Zhou |
| authorships[0].countries | JP |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I922474255 |
| authorships[0].affiliations[0].raw_affiliation_string | Tokushima University, Tokushima, Japan |
| authorships[0].institutions[0].id | https://openalex.org/I922474255 |
| authorships[0].institutions[0].ror | https://ror.org/044vy1d05 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I922474255 |
| authorships[0].institutions[0].country_code | JP |
| authorships[0].institutions[0].display_name | Tokushima University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yuxiang Zhou |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Tokushima University, Tokushima, Japan |
| authorships[1].author.id | https://openalex.org/A5031861539 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6024-3598 |
| authorships[1].author.display_name | Xin Kang |
| authorships[1].countries | JP |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I922474255 |
| authorships[1].affiliations[0].raw_affiliation_string | Tokushima University, Tokushima, Japan |
| authorships[1].institutions[0].id | https://openalex.org/I922474255 |
| authorships[1].institutions[0].ror | https://ror.org/044vy1d05 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I922474255 |
| authorships[1].institutions[0].country_code | JP |
| authorships[1].institutions[0].display_name | Tokushima University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xin Kang |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Tokushima University, Tokushima, Japan |
| authorships[2].author.id | https://openalex.org/A5071943346 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4860-9184 |
| authorships[2].author.display_name | Fuji Ren |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I150229711 |
| authorships[2].affiliations[0].raw_affiliation_string | University of Electronic Science and Technology of China, Chengdu, China |
| authorships[2].institutions[0].id | https://openalex.org/I150229711 |
| authorships[2].institutions[0].ror | https://ror.org/04qr3zq92 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I150229711 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | University of Electronic Science and Technology of China |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Fuji Ren |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | University of Electronic Science and Technology of China, Chengdu, China |
| authorships[3].author.id | https://openalex.org/A5019035804 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9794-3221 |
| authorships[3].author.display_name | Huimin Lu |
| authorships[3].countries | JP |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I207014233 |
| authorships[3].affiliations[0].raw_affiliation_string | Kyushu Institute of Technology, Kitakyushu, Japan |
| authorships[3].institutions[0].id | https://openalex.org/I207014233 |
| authorships[3].institutions[0].ror | https://ror.org/02278tr80 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I207014233 |
| authorships[3].institutions[0].country_code | JP |
| authorships[3].institutions[0].display_name | Kyushu Institute of Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Huimin Lu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Kyushu Institute of Technology, Kitakyushu, Japan |
| authorships[4].author.id | https://openalex.org/A5045676644 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-6293-0428 |
| authorships[4].author.display_name | Satoshi Nakagawa |
| authorships[4].countries | JP |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I74801974 |
| authorships[4].affiliations[0].raw_affiliation_string | The University of Tokyo, Tokyo, Japan |
| authorships[4].institutions[0].id | https://openalex.org/I74801974 |
| authorships[4].institutions[0].ror | https://ror.org/057zh3y96 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I74801974 |
| authorships[4].institutions[0].country_code | JP |
| authorships[4].institutions[0].display_name | The University of Tokyo |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Satoshi Nakagawa |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | The University of Tokyo, Tokyo, Japan |
| authorships[5].author.id | https://openalex.org/A5002135520 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-8140-8512 |
| authorships[5].author.display_name | Shan Xiao |
| authorships[5].countries | JP |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210122944 |
| authorships[5].affiliations[0].raw_affiliation_string | Tokushima University Hospital, Tokushima, Japan |
| authorships[5].institutions[0].id | https://openalex.org/I4210122944 |
| authorships[5].institutions[0].ror | https://ror.org/021ph5e41 |
| authorships[5].institutions[0].type | healthcare |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210122944 |
| authorships[5].institutions[0].country_code | JP |
| authorships[5].institutions[0].display_name | Tokushima University Hospital |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Xiao Shan |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Tokushima University Hospital, Tokushima, Japan |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.neucom.2023.126970 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A multi-attention and depthwise separable convolution network for medical image segmentation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10036 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Neural Network Applications |
| related_works | https://openalex.org/W2530952058, https://openalex.org/W2582836483, https://openalex.org/W4299366318, https://openalex.org/W3158431807, https://openalex.org/W4297580547, https://openalex.org/W2951583185, https://openalex.org/W3144569342, https://openalex.org/W2185902295, https://openalex.org/W4308155352, https://openalex.org/W2945274617 |
| cited_by_count | 39 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 24 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 15 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1016/j.neucom.2023.126970 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S45693802 |
| best_oa_location.source.issn | 0925-2312, 1872-8286 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0925-2312 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Neurocomputing |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Neurocomputing |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.neucom.2023.126970 |
| primary_location.id | doi:10.1016/j.neucom.2023.126970 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S45693802 |
| primary_location.source.issn | 0925-2312, 1872-8286 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0925-2312 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Neurocomputing |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Neurocomputing |
| primary_location.landing_page_url | https://doi.org/10.1016/j.neucom.2023.126970 |
| publication_date | 2023-10-29 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W4220670656, https://openalex.org/W3027763298, https://openalex.org/W4285098962, https://openalex.org/W2791723176, https://openalex.org/W3002569343, https://openalex.org/W4292136262, https://openalex.org/W4282934095, https://openalex.org/W4386057777, https://openalex.org/W4292183902, https://openalex.org/W6805172049, https://openalex.org/W6639824700, https://openalex.org/W6796370697, https://openalex.org/W3009475780, https://openalex.org/W6798616986, https://openalex.org/W2531409750, https://openalex.org/W6739901393, https://openalex.org/W3146366485, https://openalex.org/W4327520754, https://openalex.org/W6791241316, https://openalex.org/W3182906273, https://openalex.org/W4381384742, https://openalex.org/W6765842094, https://openalex.org/W2994739204, https://openalex.org/W6846216940, https://openalex.org/W4366124369, https://openalex.org/W3197440202, https://openalex.org/W4315865046, https://openalex.org/W6795435739, https://openalex.org/W4212875960, https://openalex.org/W6791469159, https://openalex.org/W2793268137, https://openalex.org/W2567599812, https://openalex.org/W3096947210, https://openalex.org/W3011743383, https://openalex.org/W6768712932, https://openalex.org/W6769827063, https://openalex.org/W6768908150, https://openalex.org/W6761415830, https://openalex.org/W3206685025, https://openalex.org/W6758951285, https://openalex.org/W3017153481, https://openalex.org/W6786346207, https://openalex.org/W2982083293, https://openalex.org/W2963163009, https://openalex.org/W2194775991, https://openalex.org/W2888358068, https://openalex.org/W6718240422, https://openalex.org/W6766121741, https://openalex.org/W4322627140, https://openalex.org/W6770229101, https://openalex.org/W2559597482, https://openalex.org/W4317515509, https://openalex.org/W2927980542, https://openalex.org/W4300154369, https://openalex.org/W4310330006, https://openalex.org/W3168491317, https://openalex.org/W2798122215, https://openalex.org/W3029253863, https://openalex.org/W3127751679, https://openalex.org/W2612690371, https://openalex.org/W4297775537, https://openalex.org/W1522301498, https://openalex.org/W4253570578, https://openalex.org/W3003864320, https://openalex.org/W4206816857 |
| referenced_works_count | 65 |
| abstract_inverted_index.a | 118 |
| abstract_inverted_index.In | 69 |
| abstract_inverted_index.in | 11, 36, 45 |
| abstract_inverted_index.is | 5 |
| abstract_inverted_index.of | 24, 41, 55, 92 |
| abstract_inverted_index.to | 8, 51, 71, 85 |
| abstract_inverted_index.we | 74 |
| abstract_inverted_index.The | 14, 89, 137 |
| abstract_inverted_index.and | 30, 58, 78, 98, 106 |
| abstract_inverted_index.are | 33 |
| abstract_inverted_index.for | 62 |
| abstract_inverted_index.has | 19 |
| abstract_inverted_index.its | 129 |
| abstract_inverted_index.our | 93, 115, 141 |
| abstract_inverted_index.the | 22, 39, 53, 60, 76, 124 |
| abstract_inverted_index.deep | 15 |
| abstract_inverted_index.dual | 96 |
| abstract_inverted_index.help | 9 |
| abstract_inverted_index.rich | 103 |
| abstract_inverted_index.that | 140 |
| abstract_inverted_index.this | 37 |
| abstract_inverted_index.U-Net | 29, 82 |
| abstract_inverted_index.While | 28 |
| abstract_inverted_index.image | 2, 26, 48, 149 |
| abstract_inverted_index.model | 56 |
| abstract_inverted_index.scene | 47 |
| abstract_inverted_index.tends | 50 |
| abstract_inverted_index.these | 72 |
| abstract_inverted_index.three | 146 |
| abstract_inverted_index.across | 110, 133, 145 |
| abstract_inverted_index.albeit | 43 |
| abstract_inverted_index.aspect | 91 |
| abstract_inverted_index.driven | 21 |
| abstract_inverted_index.field, | 38 |
| abstract_inverted_index.fusing | 108 |
| abstract_inverted_index.fusion | 64 |
| abstract_inverted_index.gates, | 100 |
| abstract_inverted_index.highly | 6 |
| abstract_inverted_index.layer, | 122 |
| abstract_inverted_index.lesion | 12 |
| abstract_inverted_index.method | 4, 142 |
| abstract_inverted_index.needed | 7 |
| abstract_inverted_index.number | 54 |
| abstract_inverted_index.tasks. | 136 |
| abstract_inverted_index.widely | 34 |
| abstract_inverted_index.adeptly | 101 |
| abstract_inverted_index.between | 65 |
| abstract_inverted_index.details | 105 |
| abstract_inverted_index.diverse | 111, 147 |
| abstract_inverted_index.encoder | 116 |
| abstract_inverted_index.enhance | 86 |
| abstract_inverted_index.experts | 10 |
| abstract_inverted_index.feature | 63, 87 |
| abstract_inverted_index.inflate | 52 |
| abstract_inverted_index.layers. | 68, 113 |
| abstract_inverted_index.medical | 1, 25, 148 |
| abstract_inverted_index.model's | 125 |
| abstract_inverted_index.natural | 46 |
| abstract_inverted_index.present | 75 |
| abstract_inverted_index.results | 138 |
| abstract_inverted_index.various | 134 |
| abstract_inverted_index.without | 127 |
| abstract_inverted_index.designed | 84 |
| abstract_inverted_index.emerging | 18 |
| abstract_inverted_index.ensuring | 131 |
| abstract_inverted_index.features | 109 |
| abstract_inverted_index.learning | 16 |
| abstract_inverted_index.neglects | 59 |
| abstract_inverted_index.response | 70 |
| abstract_inverted_index.utilized | 35 |
| abstract_inverted_index.Automatic | 0 |
| abstract_inverted_index.Depthwise | 79 |
| abstract_inverted_index.Separable | 80 |
| abstract_inverted_index.attention | 31, 97, 99 |
| abstract_inverted_index.capturing | 102 |
| abstract_inverted_index.datasets. | 150 |
| abstract_inverted_index.depthwise | 119 |
| abstract_inverted_index.different | 66 |
| abstract_inverted_index.efficacy, | 130 |
| abstract_inverted_index.framework | 94 |
| abstract_inverted_index.potential | 61 |
| abstract_inverted_index.separable | 120 |
| abstract_inverted_index.attention, | 42 |
| abstract_inverted_index.complexity | 126 |
| abstract_inverted_index.contextual | 104 |
| abstract_inverted_index.integrates | 95, 117 |
| abstract_inverted_index.mechanisms | 32 |
| abstract_inverted_index.parameters | 57 |
| abstract_inverted_index.profoundly | 20 |
| abstract_inverted_index.seamlessly | 107 |
| abstract_inverted_index.successful | 44 |
| abstract_inverted_index.technology | 17 |
| abstract_inverted_index.(MDSU-Net), | 83 |
| abstract_inverted_index.Convolution | 81 |
| abstract_inverted_index.application | 40 |
| abstract_inverted_index.challenges, | 73 |
| abstract_inverted_index.convolution | 121 |
| abstract_inverted_index.demonstrate | 139 |
| abstract_inverted_index.development | 23 |
| abstract_inverted_index.extraction. | 88 |
| abstract_inverted_index.outperforms | 143 |
| abstract_inverted_index.sacrificing | 128 |
| abstract_inverted_index.versatility | 132 |
| abstract_inverted_index.segmentation | 3, 135 |
| abstract_inverted_index.streamlining | 123 |
| abstract_inverted_index.Additionally, | 114 |
| abstract_inverted_index.convolutional | 67, 112 |
| abstract_inverted_index.segmentation, | 49 |
| abstract_inverted_index.segmentation. | 13, 27 |
| abstract_inverted_index.Multi-Attention | 77 |
| abstract_inverted_index.multi-attention | 90 |
| abstract_inverted_index.state-of-the-art | 144 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 99 |
| corresponding_author_ids | https://openalex.org/A5031861539 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I922474255 |
| citation_normalized_percentile.value | 0.97171656 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |