A multi-feature stock price prediction model based on multi-feature calculation, LASSO feature selection, and Ca-LSTM network Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1080/09540091.2023.2286188
This paper addresses the crucial realm of stock price prediction, highly coveted by individual investors and institutions for its substantial economic implications. The inherent non-stationary and intricate nature of stock market fluctuations, coupled with real-time transactions, poses a formidable challenge for accurate and swift prediction. Unlike prevailing research that predominantly focuses on forecasting methods, our novel approach places a paramount emphasis on processing original data, introducing 57 technical indicators to better represent economic aspects for stock price prediction. Signifying the importance of each feature, we employ the LASSO algorithm to derive an optimal feature combination. Additionally, our methodology utilizes the Ca-LSTM (cascade long short-term memory) technique, enhancing information extraction from individual features. Experimental results, gauged by mean error, underscore the superiority of the Ca-LSTM model over other time series prediction models and conventional long short-term memory approaches. Notably, our model's integration with the accumulation-based VMD-LSTM model demonstrates enhanced forecasting accuracy. This proposed method holds considerable potential to refine stock price prediction, thereby delivering heightened value to investors in the dynamic financial landscape.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1080/09540091.2023.2286188
- https://www.tandfonline.com/doi/pdf/10.1080/09540091.2023.2286188?needAccess=true
- OA Status
- gold
- Cited By
- 10
- References
- 46
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4391022567
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4391022567Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1080/09540091.2023.2286188Digital Object Identifier
- Title
-
A multi-feature stock price prediction model based on multi-feature calculation, LASSO feature selection, and Ca-LSTM networkWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-19Full publication date if available
- Authors
-
Xiao Dong Chen, Lei Cao, Zhi Cao, Hongwei ZhangList of authors in order
- Landing page
-
https://doi.org/10.1080/09540091.2023.2286188Publisher landing page
- PDF URL
-
https://www.tandfonline.com/doi/pdf/10.1080/09540091.2023.2286188?needAccess=trueDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.tandfonline.com/doi/pdf/10.1080/09540091.2023.2286188?needAccess=trueDirect OA link when available
- Concepts
-
Computer science, Feature selection, Artificial intelligence, Stock market, Machine learning, Lasso (programming language), Stock price, Stock (firearms), Econometrics, Series (stratigraphy), Economics, Paleontology, World Wide Web, Biology, Mechanical engineering, Horse, EngineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
10Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 5, 2024: 5Per-year citation counts (last 5 years)
- References (count)
-
46Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4391022567 |
|---|---|
| doi | https://doi.org/10.1080/09540091.2023.2286188 |
| ids.doi | https://doi.org/10.1080/09540091.2023.2286188 |
| ids.openalex | https://openalex.org/W4391022567 |
| fwci | 9.56522696 |
| type | article |
| title | A multi-feature stock price prediction model based on multi-feature calculation, LASSO feature selection, and Ca-LSTM network |
| biblio.issue | 1 |
| biblio.volume | 36 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11326 |
| topics[0].field.id | https://openalex.org/fields/18 |
| topics[0].field.display_name | Decision Sciences |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1803 |
| topics[0].subfield.display_name | Management Science and Operations Research |
| topics[0].display_name | Stock Market Forecasting Methods |
| topics[1].id | https://openalex.org/T11270 |
| topics[1].field.id | https://openalex.org/fields/20 |
| topics[1].field.display_name | Economics, Econometrics and Finance |
| topics[1].score | 0.9952999949455261 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2002 |
| topics[1].subfield.display_name | Economics and Econometrics |
| topics[1].display_name | Complex Systems and Time Series Analysis |
| topics[2].id | https://openalex.org/T10047 |
| topics[2].field.id | https://openalex.org/fields/20 |
| topics[2].field.display_name | Economics, Econometrics and Finance |
| topics[2].score | 0.9948999881744385 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2003 |
| topics[2].subfield.display_name | Finance |
| topics[2].display_name | Financial Markets and Investment Strategies |
| is_xpac | False |
| apc_list.value | 1270 |
| apc_list.currency | USD |
| apc_list.value_usd | 1270 |
| apc_paid.value | 1270 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1270 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7584384679794312 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C148483581 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6681572794914246 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q446488 |
| concepts[1].display_name | Feature selection |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5525151491165161 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C2780299701 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5297594666481018 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q475000 |
| concepts[3].display_name | Stock market |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5108027458190918 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C37616216 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5092579126358032 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3218363 |
| concepts[5].display_name | Lasso (programming language) |
| concepts[6].id | https://openalex.org/C2988984586 |
| concepts[6].level | 3 |
| concepts[6].score | 0.4819238483905792 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1020013 |
| concepts[6].display_name | Stock price |
| concepts[7].id | https://openalex.org/C204036174 |
| concepts[7].level | 2 |
| concepts[7].score | 0.45921561121940613 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q909380 |
| concepts[7].display_name | Stock (firearms) |
| concepts[8].id | https://openalex.org/C149782125 |
| concepts[8].level | 1 |
| concepts[8].score | 0.41005176305770874 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[8].display_name | Econometrics |
| concepts[9].id | https://openalex.org/C143724316 |
| concepts[9].level | 2 |
| concepts[9].score | 0.1667795181274414 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q312468 |
| concepts[9].display_name | Series (stratigraphy) |
| concepts[10].id | https://openalex.org/C162324750 |
| concepts[10].level | 0 |
| concepts[10].score | 0.14431247115135193 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[10].display_name | Economics |
| concepts[11].id | https://openalex.org/C151730666 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[11].display_name | Paleontology |
| concepts[12].id | https://openalex.org/C136764020 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q466 |
| concepts[12].display_name | World Wide Web |
| concepts[13].id | https://openalex.org/C86803240 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[13].display_name | Biology |
| concepts[14].id | https://openalex.org/C78519656 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q101333 |
| concepts[14].display_name | Mechanical engineering |
| concepts[15].id | https://openalex.org/C2780762169 |
| concepts[15].level | 2 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q5905368 |
| concepts[15].display_name | Horse |
| concepts[16].id | https://openalex.org/C127413603 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[16].display_name | Engineering |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7584384679794312 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/feature-selection |
| keywords[1].score | 0.6681572794914246 |
| keywords[1].display_name | Feature selection |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.5525151491165161 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/stock-market |
| keywords[3].score | 0.5297594666481018 |
| keywords[3].display_name | Stock market |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.5108027458190918 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/lasso |
| keywords[5].score | 0.5092579126358032 |
| keywords[5].display_name | Lasso (programming language) |
| keywords[6].id | https://openalex.org/keywords/stock-price |
| keywords[6].score | 0.4819238483905792 |
| keywords[6].display_name | Stock price |
| keywords[7].id | https://openalex.org/keywords/stock |
| keywords[7].score | 0.45921561121940613 |
| keywords[7].display_name | Stock (firearms) |
| keywords[8].id | https://openalex.org/keywords/econometrics |
| keywords[8].score | 0.41005176305770874 |
| keywords[8].display_name | Econometrics |
| keywords[9].id | https://openalex.org/keywords/series |
| keywords[9].score | 0.1667795181274414 |
| keywords[9].display_name | Series (stratigraphy) |
| keywords[10].id | https://openalex.org/keywords/economics |
| keywords[10].score | 0.14431247115135193 |
| keywords[10].display_name | Economics |
| language | en |
| locations[0].id | doi:10.1080/09540091.2023.2286188 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210188800 |
| locations[0].source.issn | 0954-0091, 1360-0494 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 0954-0091 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Connection Science |
| locations[0].source.host_organization | https://openalex.org/P4310320547 |
| locations[0].source.host_organization_name | Taylor & Francis |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320547 |
| locations[0].source.host_organization_lineage_names | Taylor & Francis |
| locations[0].license | |
| locations[0].pdf_url | https://www.tandfonline.com/doi/pdf/10.1080/09540091.2023.2286188?needAccess=true |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Connection Science |
| locations[0].landing_page_url | https://doi.org/10.1080/09540091.2023.2286188 |
| locations[1].id | pmh:oai:doaj.org/article:ca1ae3c7b0a24afeb7c9cdd678db0f3d |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Connection Science, Vol 36, Iss 1 (2024) |
| locations[1].landing_page_url | https://doaj.org/article/ca1ae3c7b0a24afeb7c9cdd678db0f3d |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5100373698 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0150-0491 |
| authorships[0].author.display_name | Xiao Dong Chen |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I96733725 |
| authorships[0].affiliations[0].raw_affiliation_string | College of Information Engineering, Shanghai Maritime University, Shanghai, People's Republic of China |
| authorships[0].institutions[0].id | https://openalex.org/I96733725 |
| authorships[0].institutions[0].ror | https://ror.org/04z7qrj66 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I96733725 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Shanghai Maritime University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xiao Chen |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | College of Information Engineering, Shanghai Maritime University, Shanghai, People's Republic of China |
| authorships[1].author.id | https://openalex.org/A5049926126 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9909-8607 |
| authorships[1].author.display_name | Lei Cao |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I96733725 |
| authorships[1].affiliations[0].raw_affiliation_string | College of Information Engineering, Shanghai Maritime University, Shanghai, People's Republic of China |
| authorships[1].institutions[0].id | https://openalex.org/I96733725 |
| authorships[1].institutions[0].ror | https://ror.org/04z7qrj66 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I96733725 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Shanghai Maritime University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Lei Cao |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | College of Information Engineering, Shanghai Maritime University, Shanghai, People's Republic of China |
| authorships[2].author.id | https://openalex.org/A5049500649 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3232-5200 |
| authorships[2].author.display_name | Zhi Cao |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I96733725 |
| authorships[2].affiliations[0].raw_affiliation_string | College of Information Engineering, Shanghai Maritime University, Shanghai, People's Republic of China |
| authorships[2].institutions[0].id | https://openalex.org/I96733725 |
| authorships[2].institutions[0].ror | https://ror.org/04z7qrj66 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I96733725 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Shanghai Maritime University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zhi Cao |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | College of Information Engineering, Shanghai Maritime University, Shanghai, People's Republic of China |
| authorships[3].author.id | https://openalex.org/A5100397259 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-8711-3870 |
| authorships[3].author.display_name | Hongwei Zhang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I96733725 |
| authorships[3].affiliations[0].raw_affiliation_string | College of Information Engineering, Shanghai Maritime University, Shanghai, People's Republic of China |
| authorships[3].institutions[0].id | https://openalex.org/I96733725 |
| authorships[3].institutions[0].ror | https://ror.org/04z7qrj66 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I96733725 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Shanghai Maritime University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | HongWei Zhang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | College of Information Engineering, Shanghai Maritime University, Shanghai, People's Republic of China |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.tandfonline.com/doi/pdf/10.1080/09540091.2023.2286188?needAccess=true |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A multi-feature stock price prediction model based on multi-feature calculation, LASSO feature selection, and Ca-LSTM network |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11326 |
| primary_topic.field.id | https://openalex.org/fields/18 |
| primary_topic.field.display_name | Decision Sciences |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1803 |
| primary_topic.subfield.display_name | Management Science and Operations Research |
| primary_topic.display_name | Stock Market Forecasting Methods |
| related_works | https://openalex.org/W2380784125, https://openalex.org/W2810025138, https://openalex.org/W1997711767, https://openalex.org/W4386543887, https://openalex.org/W4387885766, https://openalex.org/W2765894738, https://openalex.org/W2370669686, https://openalex.org/W247222457, https://openalex.org/W2887069341, https://openalex.org/W3124131549 |
| cited_by_count | 10 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 5 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 5 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1080/09540091.2023.2286188 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210188800 |
| best_oa_location.source.issn | 0954-0091, 1360-0494 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 0954-0091 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Connection Science |
| best_oa_location.source.host_organization | https://openalex.org/P4310320547 |
| best_oa_location.source.host_organization_name | Taylor & Francis |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320547 |
| best_oa_location.source.host_organization_lineage_names | Taylor & Francis |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://www.tandfonline.com/doi/pdf/10.1080/09540091.2023.2286188?needAccess=true |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Connection Science |
| best_oa_location.landing_page_url | https://doi.org/10.1080/09540091.2023.2286188 |
| primary_location.id | doi:10.1080/09540091.2023.2286188 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210188800 |
| primary_location.source.issn | 0954-0091, 1360-0494 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 0954-0091 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Connection Science |
| primary_location.source.host_organization | https://openalex.org/P4310320547 |
| primary_location.source.host_organization_name | Taylor & Francis |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320547 |
| primary_location.source.host_organization_lineage_names | Taylor & Francis |
| primary_location.license | |
| primary_location.pdf_url | https://www.tandfonline.com/doi/pdf/10.1080/09540091.2023.2286188?needAccess=true |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Connection Science |
| primary_location.landing_page_url | https://doi.org/10.1080/09540091.2023.2286188 |
| publication_date | 2024-01-19 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W3105339524, https://openalex.org/W3124947604, https://openalex.org/W3175821757, https://openalex.org/W1999996900, https://openalex.org/W1547333707, https://openalex.org/W2046346480, https://openalex.org/W4307440667, https://openalex.org/W2958060654, https://openalex.org/W3005069536, https://openalex.org/W2990597424, https://openalex.org/W4293226241, https://openalex.org/W3202315245, https://openalex.org/W2064675550, https://openalex.org/W2905193157, https://openalex.org/W3157171516, https://openalex.org/W2005424446, https://openalex.org/W3083701701, https://openalex.org/W3001790167, https://openalex.org/W4311089293, https://openalex.org/W4205171949, https://openalex.org/W4200197568, https://openalex.org/W3167977819, https://openalex.org/W4247496182, https://openalex.org/W3043008751, https://openalex.org/W2084439920, https://openalex.org/W2997421965, https://openalex.org/W2303916163, https://openalex.org/W3152560920, https://openalex.org/W3173074502, https://openalex.org/W2897733922, https://openalex.org/W4205505376, https://openalex.org/W3038102750, https://openalex.org/W3183739234, https://openalex.org/W4283740490, https://openalex.org/W2135046866, https://openalex.org/W4228998808, https://openalex.org/W4229446061, https://openalex.org/W4311954044, https://openalex.org/W2021938316, https://openalex.org/W3171038109, https://openalex.org/W1967647846, https://openalex.org/W2990966567, https://openalex.org/W3000568686, https://openalex.org/W3197486829, https://openalex.org/W2121702267, https://openalex.org/W4310894515 |
| referenced_works_count | 46 |
| abstract_inverted_index.a | 37, 58 |
| abstract_inverted_index.57 | 66 |
| abstract_inverted_index.an | 91 |
| abstract_inverted_index.by | 12, 115 |
| abstract_inverted_index.in | 167 |
| abstract_inverted_index.of | 6, 28, 81, 121 |
| abstract_inverted_index.on | 51, 61 |
| abstract_inverted_index.to | 69, 89, 156, 165 |
| abstract_inverted_index.we | 84 |
| abstract_inverted_index.The | 22 |
| abstract_inverted_index.and | 15, 25, 42, 131 |
| abstract_inverted_index.for | 17, 40, 74 |
| abstract_inverted_index.its | 18 |
| abstract_inverted_index.our | 54, 96, 138 |
| abstract_inverted_index.the | 3, 79, 86, 99, 119, 122, 142, 168 |
| abstract_inverted_index.This | 0, 150 |
| abstract_inverted_index.each | 82 |
| abstract_inverted_index.from | 109 |
| abstract_inverted_index.long | 102, 133 |
| abstract_inverted_index.mean | 116 |
| abstract_inverted_index.over | 125 |
| abstract_inverted_index.that | 48 |
| abstract_inverted_index.time | 127 |
| abstract_inverted_index.with | 33, 141 |
| abstract_inverted_index.LASSO | 87 |
| abstract_inverted_index.data, | 64 |
| abstract_inverted_index.holds | 153 |
| abstract_inverted_index.model | 124, 145 |
| abstract_inverted_index.novel | 55 |
| abstract_inverted_index.other | 126 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.poses | 36 |
| abstract_inverted_index.price | 8, 76, 159 |
| abstract_inverted_index.realm | 5 |
| abstract_inverted_index.stock | 7, 29, 75, 158 |
| abstract_inverted_index.swift | 43 |
| abstract_inverted_index.value | 164 |
| abstract_inverted_index.Unlike | 45 |
| abstract_inverted_index.better | 70 |
| abstract_inverted_index.derive | 90 |
| abstract_inverted_index.employ | 85 |
| abstract_inverted_index.error, | 117 |
| abstract_inverted_index.gauged | 114 |
| abstract_inverted_index.highly | 10 |
| abstract_inverted_index.market | 30 |
| abstract_inverted_index.memory | 135 |
| abstract_inverted_index.method | 152 |
| abstract_inverted_index.models | 130 |
| abstract_inverted_index.nature | 27 |
| abstract_inverted_index.places | 57 |
| abstract_inverted_index.refine | 157 |
| abstract_inverted_index.series | 128 |
| abstract_inverted_index.Ca-LSTM | 100, 123 |
| abstract_inverted_index.aspects | 73 |
| abstract_inverted_index.coupled | 32 |
| abstract_inverted_index.coveted | 11 |
| abstract_inverted_index.crucial | 4 |
| abstract_inverted_index.dynamic | 169 |
| abstract_inverted_index.feature | 93 |
| abstract_inverted_index.focuses | 50 |
| abstract_inverted_index.memory) | 104 |
| abstract_inverted_index.model's | 139 |
| abstract_inverted_index.optimal | 92 |
| abstract_inverted_index.thereby | 161 |
| abstract_inverted_index.(cascade | 101 |
| abstract_inverted_index.Notably, | 137 |
| abstract_inverted_index.VMD-LSTM | 144 |
| abstract_inverted_index.accurate | 41 |
| abstract_inverted_index.approach | 56 |
| abstract_inverted_index.economic | 20, 72 |
| abstract_inverted_index.emphasis | 60 |
| abstract_inverted_index.enhanced | 147 |
| abstract_inverted_index.feature, | 83 |
| abstract_inverted_index.inherent | 23 |
| abstract_inverted_index.methods, | 53 |
| abstract_inverted_index.original | 63 |
| abstract_inverted_index.proposed | 151 |
| abstract_inverted_index.research | 47 |
| abstract_inverted_index.results, | 113 |
| abstract_inverted_index.utilizes | 98 |
| abstract_inverted_index.accuracy. | 149 |
| abstract_inverted_index.addresses | 2 |
| abstract_inverted_index.algorithm | 88 |
| abstract_inverted_index.challenge | 39 |
| abstract_inverted_index.enhancing | 106 |
| abstract_inverted_index.features. | 111 |
| abstract_inverted_index.financial | 170 |
| abstract_inverted_index.intricate | 26 |
| abstract_inverted_index.investors | 14, 166 |
| abstract_inverted_index.paramount | 59 |
| abstract_inverted_index.potential | 155 |
| abstract_inverted_index.real-time | 34 |
| abstract_inverted_index.represent | 71 |
| abstract_inverted_index.technical | 67 |
| abstract_inverted_index.Signifying | 78 |
| abstract_inverted_index.delivering | 162 |
| abstract_inverted_index.extraction | 108 |
| abstract_inverted_index.formidable | 38 |
| abstract_inverted_index.heightened | 163 |
| abstract_inverted_index.importance | 80 |
| abstract_inverted_index.indicators | 68 |
| abstract_inverted_index.individual | 13, 110 |
| abstract_inverted_index.landscape. | 171 |
| abstract_inverted_index.prediction | 129 |
| abstract_inverted_index.prevailing | 46 |
| abstract_inverted_index.processing | 62 |
| abstract_inverted_index.short-term | 103, 134 |
| abstract_inverted_index.technique, | 105 |
| abstract_inverted_index.underscore | 118 |
| abstract_inverted_index.approaches. | 136 |
| abstract_inverted_index.forecasting | 52, 148 |
| abstract_inverted_index.information | 107 |
| abstract_inverted_index.integration | 140 |
| abstract_inverted_index.introducing | 65 |
| abstract_inverted_index.methodology | 97 |
| abstract_inverted_index.prediction, | 9, 160 |
| abstract_inverted_index.prediction. | 44, 77 |
| abstract_inverted_index.substantial | 19 |
| abstract_inverted_index.superiority | 120 |
| abstract_inverted_index.Experimental | 112 |
| abstract_inverted_index.combination. | 94 |
| abstract_inverted_index.considerable | 154 |
| abstract_inverted_index.conventional | 132 |
| abstract_inverted_index.demonstrates | 146 |
| abstract_inverted_index.institutions | 16 |
| abstract_inverted_index.Additionally, | 95 |
| abstract_inverted_index.fluctuations, | 31 |
| abstract_inverted_index.implications. | 21 |
| abstract_inverted_index.predominantly | 49 |
| abstract_inverted_index.transactions, | 35 |
| abstract_inverted_index.non-stationary | 24 |
| abstract_inverted_index.accumulation-based | 143 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 97 |
| corresponding_author_ids | https://openalex.org/A5049926126 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I96733725 |
| citation_normalized_percentile.value | 0.96468247 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |