A multi-model predictive control method for the Pichia pastoris fermentation process based on relative error weighting algorithm Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1016/j.aej.2022.03.004
The Pichia pastoris fermentation process is with highly nonlinear and time-varying and strong coupling characteristics, traditional control methods such as classic PID cannot satisfy the actual needs of the fermentation process control. In order to effectively solve the control problem of the Pichia pastoris fermentation process, a multi-model predictive control method is presented based on the relative error weighting algorithm. First, the prior sample data are divided into multiple training sample sets (sample cluster) by fuzzy C-means clustering algorithm (FCM). Then, the corresponding sub prediction model is obtained by using least square support vector machine (LSSVM) and Improved particle swarm optimization (IPSO) algorithm for each sample cluster. Finally, the control strategy of predictive model is constructed based on multi model relative error weighting algorithm. The simulation in the Pichia pastoris fermentation process shows that the algorithm proposed in this paper could improve the transient response and perform good output tracking in a wide range. It improves the adaptive ability of the model and makes it more accurate to describe the actual state of the nonlinear system.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.aej.2022.03.004
- OA Status
- gold
- Cited By
- 7
- References
- 35
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4220880933
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4220880933Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.aej.2022.03.004Digital Object Identifier
- Title
-
A multi-model predictive control method for the Pichia pastoris fermentation process based on relative error weighting algorithmWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-03-28Full publication date if available
- Authors
-
Bo Wang, Mengyi He, Xingyu Wang, Hongyu Tang, Xianglin ZhuList of authors in order
- Landing page
-
https://doi.org/10.1016/j.aej.2022.03.004Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.aej.2022.03.004Direct OA link when available
- Concepts
-
Pichia pastoris, Weighting, Model predictive control, Cluster analysis, Initialization, Particle swarm optimization, Computer science, Algorithm, Mathematical optimization, Mathematics, Artificial intelligence, Control (management), Programming language, Medicine, Recombinant DNA, Gene, Chemistry, Radiology, BiochemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
7Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 3, 2023: 2, 2022: 1Per-year citation counts (last 5 years)
- References (count)
-
35Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4220880933 |
|---|---|
| doi | https://doi.org/10.1016/j.aej.2022.03.004 |
| ids.doi | https://doi.org/10.1016/j.aej.2022.03.004 |
| ids.openalex | https://openalex.org/W4220880933 |
| fwci | 1.04494497 |
| type | article |
| title | A multi-model predictive control method for the Pichia pastoris fermentation process based on relative error weighting algorithm |
| biblio.issue | 12 |
| biblio.volume | 61 |
| biblio.last_page | 9660 |
| biblio.first_page | 9649 |
| topics[0].id | https://openalex.org/T10791 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9975000023841858 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2207 |
| topics[0].subfield.display_name | Control and Systems Engineering |
| topics[0].display_name | Advanced Control Systems Optimization |
| topics[1].id | https://openalex.org/T10876 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9836999773979187 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2207 |
| topics[1].subfield.display_name | Control and Systems Engineering |
| topics[1].display_name | Fault Detection and Control Systems |
| topics[2].id | https://openalex.org/T13717 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9728999733924866 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2207 |
| topics[2].subfield.display_name | Control and Systems Engineering |
| topics[2].display_name | Advanced Algorithms and Applications |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list.value | 860 |
| apc_list.currency | USD |
| apc_list.value_usd | 860 |
| apc_paid.value | 860 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 860 |
| concepts[0].id | https://openalex.org/C2781372317 |
| concepts[0].level | 4 |
| concepts[0].score | 0.737937331199646 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q148697 |
| concepts[0].display_name | Pichia pastoris |
| concepts[1].id | https://openalex.org/C183115368 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7008441686630249 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q856577 |
| concepts[1].display_name | Weighting |
| concepts[2].id | https://openalex.org/C172205157 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6128638982772827 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1782962 |
| concepts[2].display_name | Model predictive control |
| concepts[3].id | https://openalex.org/C73555534 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5310117602348328 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q622825 |
| concepts[3].display_name | Cluster analysis |
| concepts[4].id | https://openalex.org/C114466953 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5057871341705322 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q6034165 |
| concepts[4].display_name | Initialization |
| concepts[5].id | https://openalex.org/C85617194 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5007021427154541 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2072794 |
| concepts[5].display_name | Particle swarm optimization |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.4756081700325012 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C11413529 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4639854431152344 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[7].display_name | Algorithm |
| concepts[8].id | https://openalex.org/C126255220 |
| concepts[8].level | 1 |
| concepts[8].score | 0.35967904329299927 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[8].display_name | Mathematical optimization |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.2755127549171448 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.2300567924976349 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| concepts[11].id | https://openalex.org/C2775924081 |
| concepts[11].level | 2 |
| concepts[11].score | 0.1920289397239685 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q55608371 |
| concepts[11].display_name | Control (management) |
| concepts[12].id | https://openalex.org/C199360897 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[12].display_name | Programming language |
| concepts[13].id | https://openalex.org/C71924100 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[13].display_name | Medicine |
| concepts[14].id | https://openalex.org/C40767141 |
| concepts[14].level | 3 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q285697 |
| concepts[14].display_name | Recombinant DNA |
| concepts[15].id | https://openalex.org/C104317684 |
| concepts[15].level | 2 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[15].display_name | Gene |
| concepts[16].id | https://openalex.org/C185592680 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[16].display_name | Chemistry |
| concepts[17].id | https://openalex.org/C126838900 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[17].display_name | Radiology |
| concepts[18].id | https://openalex.org/C55493867 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[18].display_name | Biochemistry |
| keywords[0].id | https://openalex.org/keywords/pichia-pastoris |
| keywords[0].score | 0.737937331199646 |
| keywords[0].display_name | Pichia pastoris |
| keywords[1].id | https://openalex.org/keywords/weighting |
| keywords[1].score | 0.7008441686630249 |
| keywords[1].display_name | Weighting |
| keywords[2].id | https://openalex.org/keywords/model-predictive-control |
| keywords[2].score | 0.6128638982772827 |
| keywords[2].display_name | Model predictive control |
| keywords[3].id | https://openalex.org/keywords/cluster-analysis |
| keywords[3].score | 0.5310117602348328 |
| keywords[3].display_name | Cluster analysis |
| keywords[4].id | https://openalex.org/keywords/initialization |
| keywords[4].score | 0.5057871341705322 |
| keywords[4].display_name | Initialization |
| keywords[5].id | https://openalex.org/keywords/particle-swarm-optimization |
| keywords[5].score | 0.5007021427154541 |
| keywords[5].display_name | Particle swarm optimization |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.4756081700325012 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/algorithm |
| keywords[7].score | 0.4639854431152344 |
| keywords[7].display_name | Algorithm |
| keywords[8].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[8].score | 0.35967904329299927 |
| keywords[8].display_name | Mathematical optimization |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.2755127549171448 |
| keywords[9].display_name | Mathematics |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.2300567924976349 |
| keywords[10].display_name | Artificial intelligence |
| keywords[11].id | https://openalex.org/keywords/control |
| keywords[11].score | 0.1920289397239685 |
| keywords[11].display_name | Control (management) |
| language | en |
| locations[0].id | doi:10.1016/j.aej.2022.03.004 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764413287 |
| locations[0].source.issn | 1110-0168, 2090-2670 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1110-0168 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Alexandria Engineering Journal |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Alexandria Engineering Journal |
| locations[0].landing_page_url | https://doi.org/10.1016/j.aej.2022.03.004 |
| locations[1].id | pmh:oai:doaj.org/article:6f715f6ea1c54e958b79884914e91e29 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Alexandria Engineering Journal, Vol 61, Iss 12, Pp 9649-9660 (2022) |
| locations[1].landing_page_url | https://doaj.org/article/6f715f6ea1c54e958b79884914e91e29 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5100408148 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8588-4284 |
| authorships[0].author.display_name | Bo Wang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I115592961 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China |
| authorships[0].institutions[0].id | https://openalex.org/I115592961 |
| authorships[0].institutions[0].ror | https://ror.org/03jc41j30 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I115592961 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Jiangsu University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Bo Wang |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China |
| authorships[1].author.id | https://openalex.org/A5000465137 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Mengyi He |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I115592961 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China |
| authorships[1].institutions[0].id | https://openalex.org/I115592961 |
| authorships[1].institutions[0].ror | https://ror.org/03jc41j30 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I115592961 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Jiangsu University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Mengyi He |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China |
| authorships[2].author.id | https://openalex.org/A5100351275 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3560-2450 |
| authorships[2].author.display_name | Xingyu Wang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I115592961 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China |
| authorships[2].institutions[0].id | https://openalex.org/I115592961 |
| authorships[2].institutions[0].ror | https://ror.org/03jc41j30 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I115592961 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Jiangsu University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xingyu Wang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China |
| authorships[3].author.id | https://openalex.org/A5048877619 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-2750-0318 |
| authorships[3].author.display_name | Hongyu Tang |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4400573296 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Electrical and Information, Zhenjiang College, Zhenjiang 212028, China |
| authorships[3].institutions[0].id | https://openalex.org/I4400573296 |
| authorships[3].institutions[0].ror | https://ror.org/05yeqc316 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I4400573296 |
| authorships[3].institutions[0].country_code | |
| authorships[3].institutions[0].display_name | Zhenjiang College |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Hongyu Tang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Electrical and Information, Zhenjiang College, Zhenjiang 212028, China |
| authorships[4].author.id | https://openalex.org/A5102874920 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-2667-5298 |
| authorships[4].author.display_name | Xianglin Zhu |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I115592961 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China |
| authorships[4].institutions[0].id | https://openalex.org/I115592961 |
| authorships[4].institutions[0].ror | https://ror.org/03jc41j30 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I115592961 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Jiangsu University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Xianglin Zhu |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.aej.2022.03.004 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A multi-model predictive control method for the Pichia pastoris fermentation process based on relative error weighting algorithm |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10791 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9975000023841858 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2207 |
| primary_topic.subfield.display_name | Control and Systems Engineering |
| primary_topic.display_name | Advanced Control Systems Optimization |
| related_works | https://openalex.org/W2393867567, https://openalex.org/W2389841202, https://openalex.org/W2384724851, https://openalex.org/W2347595189, https://openalex.org/W2388275603, https://openalex.org/W3096031463, https://openalex.org/W2373277871, https://openalex.org/W2394330954, https://openalex.org/W2372057867, https://openalex.org/W2373743679 |
| cited_by_count | 7 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 2 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1016/j.aej.2022.03.004 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764413287 |
| best_oa_location.source.issn | 1110-0168, 2090-2670 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1110-0168 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Alexandria Engineering Journal |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Alexandria Engineering Journal |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.aej.2022.03.004 |
| primary_location.id | doi:10.1016/j.aej.2022.03.004 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764413287 |
| primary_location.source.issn | 1110-0168, 2090-2670 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1110-0168 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Alexandria Engineering Journal |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Alexandria Engineering Journal |
| primary_location.landing_page_url | https://doi.org/10.1016/j.aej.2022.03.004 |
| publication_date | 2022-03-28 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W3161693354, https://openalex.org/W3036347386, https://openalex.org/W3137700139, https://openalex.org/W6786532235, https://openalex.org/W2622906566, https://openalex.org/W6801291447, https://openalex.org/W2990581410, https://openalex.org/W2897357771, https://openalex.org/W3081010421, https://openalex.org/W3037097151, https://openalex.org/W3097556928, https://openalex.org/W3107607346, https://openalex.org/W3144479300, https://openalex.org/W3201655504, https://openalex.org/W6781785690, https://openalex.org/W6786664935, https://openalex.org/W2909659412, https://openalex.org/W3138489062, https://openalex.org/W2595638079, https://openalex.org/W2344858199, https://openalex.org/W1954396768, https://openalex.org/W3114622139, https://openalex.org/W3027732676, https://openalex.org/W6784541890, https://openalex.org/W6770646837, https://openalex.org/W4205857740, https://openalex.org/W3179659127, https://openalex.org/W2975640753, https://openalex.org/W2013543873, https://openalex.org/W3110242353, https://openalex.org/W3109390860, https://openalex.org/W2990220923, https://openalex.org/W3199366132, https://openalex.org/W3094223337, https://openalex.org/W3047229381 |
| referenced_works_count | 35 |
| abstract_inverted_index.a | 46, 151 |
| abstract_inverted_index.In | 32 |
| abstract_inverted_index.It | 154 |
| abstract_inverted_index.as | 19 |
| abstract_inverted_index.by | 74, 88 |
| abstract_inverted_index.in | 126, 137, 150 |
| abstract_inverted_index.is | 5, 51, 86, 114 |
| abstract_inverted_index.it | 164 |
| abstract_inverted_index.of | 27, 40, 111, 159, 172 |
| abstract_inverted_index.on | 54, 117 |
| abstract_inverted_index.to | 34, 167 |
| abstract_inverted_index.PID | 21 |
| abstract_inverted_index.The | 0, 124 |
| abstract_inverted_index.and | 9, 11, 96, 145, 162 |
| abstract_inverted_index.are | 65 |
| abstract_inverted_index.for | 103 |
| abstract_inverted_index.sub | 83 |
| abstract_inverted_index.the | 24, 28, 37, 41, 55, 61, 81, 108, 127, 134, 142, 156, 160, 169, 173 |
| abstract_inverted_index.data | 64 |
| abstract_inverted_index.each | 104 |
| abstract_inverted_index.good | 147 |
| abstract_inverted_index.into | 67 |
| abstract_inverted_index.more | 165 |
| abstract_inverted_index.sets | 71 |
| abstract_inverted_index.such | 18 |
| abstract_inverted_index.that | 133 |
| abstract_inverted_index.this | 138 |
| abstract_inverted_index.wide | 152 |
| abstract_inverted_index.with | 6 |
| abstract_inverted_index.Then, | 80 |
| abstract_inverted_index.based | 53, 116 |
| abstract_inverted_index.could | 140 |
| abstract_inverted_index.error | 57, 121 |
| abstract_inverted_index.fuzzy | 75 |
| abstract_inverted_index.least | 90 |
| abstract_inverted_index.makes | 163 |
| abstract_inverted_index.model | 85, 113, 119, 161 |
| abstract_inverted_index.multi | 118 |
| abstract_inverted_index.needs | 26 |
| abstract_inverted_index.order | 33 |
| abstract_inverted_index.paper | 139 |
| abstract_inverted_index.prior | 62 |
| abstract_inverted_index.shows | 132 |
| abstract_inverted_index.solve | 36 |
| abstract_inverted_index.state | 171 |
| abstract_inverted_index.swarm | 99 |
| abstract_inverted_index.using | 89 |
| abstract_inverted_index.(FCM). | 79 |
| abstract_inverted_index.(IPSO) | 101 |
| abstract_inverted_index.First, | 60 |
| abstract_inverted_index.Pichia | 1, 42, 128 |
| abstract_inverted_index.actual | 25, 170 |
| abstract_inverted_index.cannot | 22 |
| abstract_inverted_index.highly | 7 |
| abstract_inverted_index.method | 50 |
| abstract_inverted_index.output | 148 |
| abstract_inverted_index.range. | 153 |
| abstract_inverted_index.sample | 63, 70, 105 |
| abstract_inverted_index.square | 91 |
| abstract_inverted_index.strong | 12 |
| abstract_inverted_index.vector | 93 |
| abstract_inverted_index.(LSSVM) | 95 |
| abstract_inverted_index.(sample | 72 |
| abstract_inverted_index.C-means | 76 |
| abstract_inverted_index.ability | 158 |
| abstract_inverted_index.classic | 20 |
| abstract_inverted_index.control | 16, 38, 49, 109 |
| abstract_inverted_index.divided | 66 |
| abstract_inverted_index.improve | 141 |
| abstract_inverted_index.machine | 94 |
| abstract_inverted_index.methods | 17 |
| abstract_inverted_index.perform | 146 |
| abstract_inverted_index.problem | 39 |
| abstract_inverted_index.process | 4, 30, 131 |
| abstract_inverted_index.satisfy | 23 |
| abstract_inverted_index.support | 92 |
| abstract_inverted_index.system. | 175 |
| abstract_inverted_index.Finally, | 107 |
| abstract_inverted_index.Improved | 97 |
| abstract_inverted_index.accurate | 166 |
| abstract_inverted_index.adaptive | 157 |
| abstract_inverted_index.cluster) | 73 |
| abstract_inverted_index.cluster. | 106 |
| abstract_inverted_index.control. | 31 |
| abstract_inverted_index.coupling | 13 |
| abstract_inverted_index.describe | 168 |
| abstract_inverted_index.improves | 155 |
| abstract_inverted_index.multiple | 68 |
| abstract_inverted_index.obtained | 87 |
| abstract_inverted_index.particle | 98 |
| abstract_inverted_index.pastoris | 2, 43, 129 |
| abstract_inverted_index.process, | 45 |
| abstract_inverted_index.proposed | 136 |
| abstract_inverted_index.relative | 56, 120 |
| abstract_inverted_index.response | 144 |
| abstract_inverted_index.strategy | 110 |
| abstract_inverted_index.tracking | 149 |
| abstract_inverted_index.training | 69 |
| abstract_inverted_index.algorithm | 78, 102, 135 |
| abstract_inverted_index.nonlinear | 8, 174 |
| abstract_inverted_index.presented | 52 |
| abstract_inverted_index.transient | 143 |
| abstract_inverted_index.weighting | 58, 122 |
| abstract_inverted_index.algorithm. | 59, 123 |
| abstract_inverted_index.clustering | 77 |
| abstract_inverted_index.prediction | 84 |
| abstract_inverted_index.predictive | 48, 112 |
| abstract_inverted_index.simulation | 125 |
| abstract_inverted_index.constructed | 115 |
| abstract_inverted_index.effectively | 35 |
| abstract_inverted_index.multi-model | 47 |
| abstract_inverted_index.traditional | 15 |
| abstract_inverted_index.fermentation | 3, 29, 44, 130 |
| abstract_inverted_index.optimization | 100 |
| abstract_inverted_index.time-varying | 10 |
| abstract_inverted_index.corresponding | 82 |
| abstract_inverted_index.characteristics, | 14 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5100408148 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I115592961 |
| citation_normalized_percentile.value | 0.72329369 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |