A multi-scale covariance matrix descriptor and an accurate transformation estimation for robust point cloud registration Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.21203/rs.3.rs-4345644/v1
This paper presents a robust point cloud registration method based on a multi-scale covariance matrix descriptor and an accurate transformation estimation. Comparing with state-of-the-art feature descriptor such as FPH, 3DSC, Spin Image, etc, our proposed the multi-scale covariance matrix descriptor is superior to deal with registration problem under higher noise environment, which is since mean operation in generating covariance matrix can filters out most of the noise-damaged samples or outliers and also makes itself be robust to noise. Comparing with transformation estimation such as feature matching, clustering, ICP, RANSAC, etc, our transformation estimation is able to find a better optimal transformation between a pair of point clouds which is since our transformation estimation is a multi-level point cloud transformation estimator including feature matching, coarse transformation estimation based on clustering and a fine transformation estimation based on ICP. Experiment findings reveal that our proposed feature descriptor and transformation estimation outperforms state-of-the-art feature descriptors and transformation estimation, and registration effectiveness based on our registration framework of point cloud is extremely successful in Stanford 3D Scanning Repository, SpaceTime dataset, and especially Kinect dataset.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.21203/rs.3.rs-4345644/v1
- https://www.researchsquare.com/article/rs-4345644/latest.pdf
- OA Status
- gold
- Cited By
- 1
- References
- 42
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4396777773
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4396777773Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.21203/rs.3.rs-4345644/v1Digital Object Identifier
- Title
-
A multi-scale covariance matrix descriptor and an accurate transformation estimation for robust point cloud registrationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-05-09Full publication date if available
- Authors
-
Fengguang Xiong, Yu Kong, Minyue Hu, Zhiqiang Zhang, Chaofan Shen, Liqun Kuang, Xie HanList of authors in order
- Landing page
-
https://doi.org/10.21203/rs.3.rs-4345644/v1Publisher landing page
- PDF URL
-
https://www.researchsquare.com/article/rs-4345644/latest.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.researchsquare.com/article/rs-4345644/latest.pdfDirect OA link when available
- Concepts
-
Transformation (genetics), Covariance matrix, Scale (ratio), Point cloud, Computer science, Estimation, Cloud computing, Covariance, Artificial intelligence, Point (geometry), Matrix (chemical analysis), Pattern recognition (psychology), Mathematics, Data mining, Algorithm, Statistics, Geography, Engineering, Cartography, Biochemistry, Materials science, Systems engineering, Operating system, Geometry, Composite material, Chemistry, GeneTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1Per-year citation counts (last 5 years)
- References (count)
-
42Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4396777773 |
|---|---|
| doi | https://doi.org/10.21203/rs.3.rs-4345644/v1 |
| ids.doi | https://doi.org/10.21203/rs.3.rs-4345644/v1 |
| ids.openalex | https://openalex.org/W4396777773 |
| fwci | 1.13885505 |
| type | preprint |
| title | A multi-scale covariance matrix descriptor and an accurate transformation estimation for robust point cloud registration |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11211 |
| topics[0].field.id | https://openalex.org/fields/19 |
| topics[0].field.display_name | Earth and Planetary Sciences |
| topics[0].score | 0.9994000196456909 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1907 |
| topics[0].subfield.display_name | Geology |
| topics[0].display_name | 3D Surveying and Cultural Heritage |
| topics[1].id | https://openalex.org/T10191 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9987000226974487 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2202 |
| topics[1].subfield.display_name | Aerospace Engineering |
| topics[1].display_name | Robotics and Sensor-Based Localization |
| topics[2].id | https://openalex.org/T10719 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9968000054359436 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2206 |
| topics[2].subfield.display_name | Computational Mechanics |
| topics[2].display_name | 3D Shape Modeling and Analysis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C204241405 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7017905116081238 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q461499 |
| concepts[0].display_name | Transformation (genetics) |
| concepts[1].id | https://openalex.org/C185142706 |
| concepts[1].level | 2 |
| concepts[1].score | 0.646485447883606 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1134404 |
| concepts[1].display_name | Covariance matrix |
| concepts[2].id | https://openalex.org/C2778755073 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6395303010940552 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q10858537 |
| concepts[2].display_name | Scale (ratio) |
| concepts[3].id | https://openalex.org/C131979681 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6205605268478394 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1899648 |
| concepts[3].display_name | Point cloud |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.5140015482902527 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C96250715 |
| concepts[5].level | 2 |
| concepts[5].score | 0.506409764289856 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q965330 |
| concepts[5].display_name | Estimation |
| concepts[6].id | https://openalex.org/C79974875 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4872928857803345 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q483639 |
| concepts[6].display_name | Cloud computing |
| concepts[7].id | https://openalex.org/C178650346 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4720257818698883 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q201984 |
| concepts[7].display_name | Covariance |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.45223990082740784 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| concepts[9].id | https://openalex.org/C28719098 |
| concepts[9].level | 2 |
| concepts[9].score | 0.44339752197265625 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q44946 |
| concepts[9].display_name | Point (geometry) |
| concepts[10].id | https://openalex.org/C106487976 |
| concepts[10].level | 2 |
| concepts[10].score | 0.44272685050964355 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q685816 |
| concepts[10].display_name | Matrix (chemical analysis) |
| concepts[11].id | https://openalex.org/C153180895 |
| concepts[11].level | 2 |
| concepts[11].score | 0.3792106807231903 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[11].display_name | Pattern recognition (psychology) |
| concepts[12].id | https://openalex.org/C33923547 |
| concepts[12].level | 0 |
| concepts[12].score | 0.37140244245529175 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[12].display_name | Mathematics |
| concepts[13].id | https://openalex.org/C124101348 |
| concepts[13].level | 1 |
| concepts[13].score | 0.3402567505836487 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[13].display_name | Data mining |
| concepts[14].id | https://openalex.org/C11413529 |
| concepts[14].level | 1 |
| concepts[14].score | 0.3384656310081482 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[14].display_name | Algorithm |
| concepts[15].id | https://openalex.org/C105795698 |
| concepts[15].level | 1 |
| concepts[15].score | 0.2859766185283661 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[15].display_name | Statistics |
| concepts[16].id | https://openalex.org/C205649164 |
| concepts[16].level | 0 |
| concepts[16].score | 0.14752593636512756 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[16].display_name | Geography |
| concepts[17].id | https://openalex.org/C127413603 |
| concepts[17].level | 0 |
| concepts[17].score | 0.09915268421173096 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[17].display_name | Engineering |
| concepts[18].id | https://openalex.org/C58640448 |
| concepts[18].level | 1 |
| concepts[18].score | 0.08282941579818726 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q42515 |
| concepts[18].display_name | Cartography |
| concepts[19].id | https://openalex.org/C55493867 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[19].display_name | Biochemistry |
| concepts[20].id | https://openalex.org/C192562407 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[20].display_name | Materials science |
| concepts[21].id | https://openalex.org/C201995342 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q682496 |
| concepts[21].display_name | Systems engineering |
| concepts[22].id | https://openalex.org/C111919701 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[22].display_name | Operating system |
| concepts[23].id | https://openalex.org/C2524010 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[23].display_name | Geometry |
| concepts[24].id | https://openalex.org/C159985019 |
| concepts[24].level | 1 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[24].display_name | Composite material |
| concepts[25].id | https://openalex.org/C185592680 |
| concepts[25].level | 0 |
| concepts[25].score | 0.0 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[25].display_name | Chemistry |
| concepts[26].id | https://openalex.org/C104317684 |
| concepts[26].level | 2 |
| concepts[26].score | 0.0 |
| concepts[26].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[26].display_name | Gene |
| keywords[0].id | https://openalex.org/keywords/transformation |
| keywords[0].score | 0.7017905116081238 |
| keywords[0].display_name | Transformation (genetics) |
| keywords[1].id | https://openalex.org/keywords/covariance-matrix |
| keywords[1].score | 0.646485447883606 |
| keywords[1].display_name | Covariance matrix |
| keywords[2].id | https://openalex.org/keywords/scale |
| keywords[2].score | 0.6395303010940552 |
| keywords[2].display_name | Scale (ratio) |
| keywords[3].id | https://openalex.org/keywords/point-cloud |
| keywords[3].score | 0.6205605268478394 |
| keywords[3].display_name | Point cloud |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.5140015482902527 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/estimation |
| keywords[5].score | 0.506409764289856 |
| keywords[5].display_name | Estimation |
| keywords[6].id | https://openalex.org/keywords/cloud-computing |
| keywords[6].score | 0.4872928857803345 |
| keywords[6].display_name | Cloud computing |
| keywords[7].id | https://openalex.org/keywords/covariance |
| keywords[7].score | 0.4720257818698883 |
| keywords[7].display_name | Covariance |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.45223990082740784 |
| keywords[8].display_name | Artificial intelligence |
| keywords[9].id | https://openalex.org/keywords/point |
| keywords[9].score | 0.44339752197265625 |
| keywords[9].display_name | Point (geometry) |
| keywords[10].id | https://openalex.org/keywords/matrix |
| keywords[10].score | 0.44272685050964355 |
| keywords[10].display_name | Matrix (chemical analysis) |
| keywords[11].id | https://openalex.org/keywords/pattern-recognition |
| keywords[11].score | 0.3792106807231903 |
| keywords[11].display_name | Pattern recognition (psychology) |
| keywords[12].id | https://openalex.org/keywords/mathematics |
| keywords[12].score | 0.37140244245529175 |
| keywords[12].display_name | Mathematics |
| keywords[13].id | https://openalex.org/keywords/data-mining |
| keywords[13].score | 0.3402567505836487 |
| keywords[13].display_name | Data mining |
| keywords[14].id | https://openalex.org/keywords/algorithm |
| keywords[14].score | 0.3384656310081482 |
| keywords[14].display_name | Algorithm |
| keywords[15].id | https://openalex.org/keywords/statistics |
| keywords[15].score | 0.2859766185283661 |
| keywords[15].display_name | Statistics |
| keywords[16].id | https://openalex.org/keywords/geography |
| keywords[16].score | 0.14752593636512756 |
| keywords[16].display_name | Geography |
| keywords[17].id | https://openalex.org/keywords/engineering |
| keywords[17].score | 0.09915268421173096 |
| keywords[17].display_name | Engineering |
| keywords[18].id | https://openalex.org/keywords/cartography |
| keywords[18].score | 0.08282941579818726 |
| keywords[18].display_name | Cartography |
| language | en |
| locations[0].id | doi:10.21203/rs.3.rs-4345644/v1 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.researchsquare.com/article/rs-4345644/latest.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.21203/rs.3.rs-4345644/v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5034256540 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3596-6457 |
| authorships[0].author.display_name | Fengguang Xiong |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I135714990 |
| authorships[0].affiliations[0].raw_affiliation_string | North University of China, Shanxi Visual Information Processing and Intelligent Robot Engineering Research Center, Taiyuan 030051 |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I135714990 |
| authorships[0].affiliations[1].raw_affiliation_string | North University of China, School of Computer Science and Technology, Taiyuan 030051 |
| authorships[0].affiliations[2].institution_ids | https://openalex.org/I135714990 |
| authorships[0].affiliations[2].raw_affiliation_string | North University of China, Shanxi Provincial Key Laboratory of Machine Vision and Virtual Reality, Taiyuan 030051 |
| authorships[0].institutions[0].id | https://openalex.org/I135714990 |
| authorships[0].institutions[0].ror | https://ror.org/047bp1713 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I135714990 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | North University of China |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Fengguang Xiong |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | North University of China, School of Computer Science and Technology, Taiyuan 030051, North University of China, Shanxi Provincial Key Laboratory of Machine Vision and Virtual Reality, Taiyuan 030051, North University of China, Shanxi Visual Information Processing and Intelligent Robot Engineering Research Center, Taiyuan 030051 |
| authorships[1].author.id | https://openalex.org/A5100568642 |
| authorships[1].author.orcid | https://orcid.org/0009-0009-5169-5483 |
| authorships[1].author.display_name | Yu Kong |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I135714990 |
| authorships[1].affiliations[0].raw_affiliation_string | North University of China, School of Computer Science and Technology, Taiyuan 030051 |
| authorships[1].institutions[0].id | https://openalex.org/I135714990 |
| authorships[1].institutions[0].ror | https://ror.org/047bp1713 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I135714990 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | North University of China |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yu Kong |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | North University of China, School of Computer Science and Technology, Taiyuan 030051 |
| authorships[2].author.id | https://openalex.org/A5102662406 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Minyue Hu |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I135714990 |
| authorships[2].affiliations[0].raw_affiliation_string | North University of China, School of Computer Science and Technology, Taiyuan 030051 |
| authorships[2].institutions[0].id | https://openalex.org/I135714990 |
| authorships[2].institutions[0].ror | https://ror.org/047bp1713 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I135714990 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | North University of China |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Minyue Hu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | North University of China, School of Computer Science and Technology, Taiyuan 030051 |
| authorships[3].author.id | https://openalex.org/A5050079548 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0204-3867 |
| authorships[3].author.display_name | Zhiqiang Zhang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I135714990 |
| authorships[3].affiliations[0].raw_affiliation_string | North University of China, School of Computer Science and Technology, Taiyuan 030051 |
| authorships[3].institutions[0].id | https://openalex.org/I135714990 |
| authorships[3].institutions[0].ror | https://ror.org/047bp1713 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I135714990 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | North University of China |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zhiqiang Zhang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | North University of China, School of Computer Science and Technology, Taiyuan 030051 |
| authorships[4].author.id | https://openalex.org/A5102169693 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Chaofan Shen |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I135714990 |
| authorships[4].affiliations[0].raw_affiliation_string | North University of China, School of Computer Science and Technology, Taiyuan 030051 |
| authorships[4].institutions[0].id | https://openalex.org/I135714990 |
| authorships[4].institutions[0].ror | https://ror.org/047bp1713 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I135714990 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | North University of China |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Chaofan Shen |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | North University of China, School of Computer Science and Technology, Taiyuan 030051 |
| authorships[5].author.id | https://openalex.org/A5009855115 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-3276-5748 |
| authorships[5].author.display_name | Liqun Kuang |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I135714990 |
| authorships[5].affiliations[0].raw_affiliation_string | North University of China, School of Computer Science and Technology, Taiyuan 030051 |
| authorships[5].institutions[0].id | https://openalex.org/I135714990 |
| authorships[5].institutions[0].ror | https://ror.org/047bp1713 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I135714990 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | North University of China |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Liqun Kuang |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | North University of China, School of Computer Science and Technology, Taiyuan 030051 |
| authorships[6].author.id | https://openalex.org/A5101923580 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-2320-042X |
| authorships[6].author.display_name | Xie Han |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I135714990 |
| authorships[6].affiliations[0].raw_affiliation_string | North University of China, School of Computer Science and Technology, Taiyuan 030051 |
| authorships[6].institutions[0].id | https://openalex.org/I135714990 |
| authorships[6].institutions[0].ror | https://ror.org/047bp1713 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I135714990 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | North University of China |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Xie Han |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | North University of China, School of Computer Science and Technology, Taiyuan 030051 |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.researchsquare.com/article/rs-4345644/latest.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A multi-scale covariance matrix descriptor and an accurate transformation estimation for robust point cloud registration |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11211 |
| primary_topic.field.id | https://openalex.org/fields/19 |
| primary_topic.field.display_name | Earth and Planetary Sciences |
| primary_topic.score | 0.9994000196456909 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1907 |
| primary_topic.subfield.display_name | Geology |
| primary_topic.display_name | 3D Surveying and Cultural Heritage |
| related_works | https://openalex.org/W4244478748, https://openalex.org/W4223488648, https://openalex.org/W2134969820, https://openalex.org/W2251605416, https://openalex.org/W2560439919, https://openalex.org/W4389340727, https://openalex.org/W3150465815, https://openalex.org/W2886934452, https://openalex.org/W1489099099, https://openalex.org/W2024369332 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.21203/rs.3.rs-4345644/v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.researchsquare.com/article/rs-4345644/latest.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-4345644/v1 |
| primary_location.id | doi:10.21203/rs.3.rs-4345644/v1 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.researchsquare.com/article/rs-4345644/latest.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-4345644/v1 |
| publication_date | 2024-05-09 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W4394673792, https://openalex.org/W4392935735, https://openalex.org/W6849919668, https://openalex.org/W4283323885, https://openalex.org/W4386357493, https://openalex.org/W3156903052, https://openalex.org/W2087063852, https://openalex.org/W1564871316, https://openalex.org/W2074658631, https://openalex.org/W1972485825, https://openalex.org/W2130558599, https://openalex.org/W6683433371, https://openalex.org/W2772926850, https://openalex.org/W3092507414, https://openalex.org/W2063549868, https://openalex.org/W6662860747, https://openalex.org/W6681803944, https://openalex.org/W6651515458, https://openalex.org/W2140711847, https://openalex.org/W1973408211, https://openalex.org/W2097832352, https://openalex.org/W2089202733, https://openalex.org/W1848593906, https://openalex.org/W2752069459, https://openalex.org/W6754243659, https://openalex.org/W2901839369, https://openalex.org/W3134159130, https://openalex.org/W2120306208, https://openalex.org/W2009422376, https://openalex.org/W2000954008, https://openalex.org/W2021108091, https://openalex.org/W2170208355, https://openalex.org/W2196111060, https://openalex.org/W2136020167, https://openalex.org/W2605618441, https://openalex.org/W6683253545, https://openalex.org/W2139114878, https://openalex.org/W4235364531, https://openalex.org/W2004312117, https://openalex.org/W2120176508, https://openalex.org/W4385489837, https://openalex.org/W4367182782 |
| referenced_works_count | 42 |
| abstract_inverted_index.a | 4, 12, 98, 103, 115, 131 |
| abstract_inverted_index.3D | 172 |
| abstract_inverted_index.an | 18 |
| abstract_inverted_index.as | 28, 84 |
| abstract_inverted_index.be | 75 |
| abstract_inverted_index.in | 57, 170 |
| abstract_inverted_index.is | 41, 53, 94, 109, 114, 167 |
| abstract_inverted_index.of | 65, 105, 164 |
| abstract_inverted_index.on | 11, 128, 136, 160 |
| abstract_inverted_index.or | 69 |
| abstract_inverted_index.to | 43, 77, 96 |
| abstract_inverted_index.and | 17, 71, 130, 146, 153, 156, 177 |
| abstract_inverted_index.can | 61 |
| abstract_inverted_index.our | 34, 91, 111, 142, 161 |
| abstract_inverted_index.out | 63 |
| abstract_inverted_index.the | 36, 66 |
| abstract_inverted_index.FPH, | 29 |
| abstract_inverted_index.ICP, | 88 |
| abstract_inverted_index.ICP. | 137 |
| abstract_inverted_index.Spin | 31 |
| abstract_inverted_index.This | 1 |
| abstract_inverted_index.able | 95 |
| abstract_inverted_index.also | 72 |
| abstract_inverted_index.deal | 44 |
| abstract_inverted_index.etc, | 33, 90 |
| abstract_inverted_index.find | 97 |
| abstract_inverted_index.fine | 132 |
| abstract_inverted_index.mean | 55 |
| abstract_inverted_index.most | 64 |
| abstract_inverted_index.pair | 104 |
| abstract_inverted_index.such | 27, 83 |
| abstract_inverted_index.that | 141 |
| abstract_inverted_index.with | 23, 45, 80 |
| abstract_inverted_index.3DSC, | 30 |
| abstract_inverted_index.based | 10, 127, 135, 159 |
| abstract_inverted_index.cloud | 7, 118, 166 |
| abstract_inverted_index.makes | 73 |
| abstract_inverted_index.noise | 50 |
| abstract_inverted_index.paper | 2 |
| abstract_inverted_index.point | 6, 106, 117, 165 |
| abstract_inverted_index.since | 54, 110 |
| abstract_inverted_index.under | 48 |
| abstract_inverted_index.which | 52, 108 |
| abstract_inverted_index.Image, | 32 |
| abstract_inverted_index.Kinect | 179 |
| abstract_inverted_index.better | 99 |
| abstract_inverted_index.clouds | 107 |
| abstract_inverted_index.coarse | 124 |
| abstract_inverted_index.higher | 49 |
| abstract_inverted_index.itself | 74 |
| abstract_inverted_index.matrix | 15, 39, 60 |
| abstract_inverted_index.method | 9 |
| abstract_inverted_index.noise. | 78 |
| abstract_inverted_index.reveal | 140 |
| abstract_inverted_index.robust | 5, 76 |
| abstract_inverted_index.RANSAC, | 89 |
| abstract_inverted_index.between | 102 |
| abstract_inverted_index.feature | 25, 85, 122, 144, 151 |
| abstract_inverted_index.filters | 62 |
| abstract_inverted_index.optimal | 100 |
| abstract_inverted_index.problem | 47 |
| abstract_inverted_index.samples | 68 |
| abstract_inverted_index.Scanning | 173 |
| abstract_inverted_index.Stanford | 171 |
| abstract_inverted_index.accurate | 19 |
| abstract_inverted_index.dataset, | 176 |
| abstract_inverted_index.dataset. | 180 |
| abstract_inverted_index.findings | 139 |
| abstract_inverted_index.outliers | 70 |
| abstract_inverted_index.presents | 3 |
| abstract_inverted_index.proposed | 35, 143 |
| abstract_inverted_index.superior | 42 |
| abstract_inverted_index.Comparing | 22, 79 |
| abstract_inverted_index.SpaceTime | 175 |
| abstract_inverted_index.estimator | 120 |
| abstract_inverted_index.extremely | 168 |
| abstract_inverted_index.framework | 163 |
| abstract_inverted_index.including | 121 |
| abstract_inverted_index.matching, | 86, 123 |
| abstract_inverted_index.operation | 56 |
| abstract_inverted_index.Experiment | 138 |
| abstract_inverted_index.clustering | 129 |
| abstract_inverted_index.covariance | 14, 38, 59 |
| abstract_inverted_index.descriptor | 16, 26, 40, 145 |
| abstract_inverted_index.especially | 178 |
| abstract_inverted_index.estimation | 82, 93, 113, 126, 134, 148 |
| abstract_inverted_index.generating | 58 |
| abstract_inverted_index.successful | 169 |
| abstract_inverted_index.Repository, | 174 |
| abstract_inverted_index.clustering, | 87 |
| abstract_inverted_index.descriptors | 152 |
| abstract_inverted_index.estimation, | 155 |
| abstract_inverted_index.estimation. | 21 |
| abstract_inverted_index.multi-level | 116 |
| abstract_inverted_index.multi-scale | 13, 37 |
| abstract_inverted_index.outperforms | 149 |
| abstract_inverted_index.environment, | 51 |
| abstract_inverted_index.registration | 8, 46, 157, 162 |
| abstract_inverted_index.effectiveness | 158 |
| abstract_inverted_index.noise-damaged | 67 |
| abstract_inverted_index.transformation | 20, 81, 92, 101, 112, 119, 125, 133, 147, 154 |
| abstract_inverted_index.state-of-the-art | 24, 150 |
| abstract_inverted_index.<title>Abstract</title> | 0 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile.value | 0.7925483 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |