A multi-scale feature extraction and fusion method for diagnosing bearing faults Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.37965/jdmd.2024.560
Bearing fault diagnosis is vital to safeguard the heath of rotating machinery. It can help to avoid economic losses and safe accidents in time. Effective feature extraction is the premise of diagnosing bearing faults. However, effective features characterizing the health status of bearings are difficult to extract from the raw bearing vibration signals. Furthermore, inefficient feature extraction results in substantial time wastage, making it hard to apply in real time monitoring. A novel feature extraction method for diagnosing bearing faults using multi-scale improved envelope spectrum entropy (MIESE) is proposed in this work. First, bearing vibration signals are analyzed across multiple scales, and improved envelope spectrum entropy (IESE) is extracted from these signals at each scale to form an original feature set. Subsequently, joint approximate diagonalization eigen (JADE) is applied to fuse above feature set for effectively eliminating redundancy and generated a refined feature set. Finally, the newly generated feature set is input into support vector machines (SVM) to effectively diagnose bearing health status. Two cases studies are employed to demonstrate the reliability of the proposed method. The results illustrate the proposed method can improve the stability of extracted features and increase the computational efficiency. Conflict of Interest Statement The authors declare no conflicts of interest.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.37965/jdmd.2024.560
- https://ojs.istp-press.com/dmd/article/download/560/513
- OA Status
- diamond
- Cited By
- 2
- References
- 18
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4401384119
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4401384119Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.37965/jdmd.2024.560Digital Object Identifier
- Title
-
A multi-scale feature extraction and fusion method for diagnosing bearing faultsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-08-07Full publication date if available
- Authors
-
Zhixiang Chen, Hang Wang, Yuanyuan Zhou, Yang Yang, Yongbin LiuList of authors in order
- Landing page
-
https://doi.org/10.37965/jdmd.2024.560Publisher landing page
- PDF URL
-
https://ojs.istp-press.com/dmd/article/download/560/513Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://ojs.istp-press.com/dmd/article/download/560/513Direct OA link when available
- Concepts
-
Feature extraction, Computer science, Pattern recognition (psychology), Entropy (arrow of time), Bearing (navigation), Data mining, Support vector machine, Artificial intelligence, Rolling-element bearing, Redundancy (engineering), Vibration, Operating system, Physics, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
18Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4401384119 |
|---|---|
| doi | https://doi.org/10.37965/jdmd.2024.560 |
| ids.doi | https://doi.org/10.37965/jdmd.2024.560 |
| ids.openalex | https://openalex.org/W4401384119 |
| fwci | 1.27241737 |
| type | article |
| title | A multi-scale feature extraction and fusion method for diagnosing bearing faults |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10220 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2207 |
| topics[0].subfield.display_name | Control and Systems Engineering |
| topics[0].display_name | Machine Fault Diagnosis Techniques |
| topics[1].id | https://openalex.org/T10876 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9930999875068665 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2207 |
| topics[1].subfield.display_name | Control and Systems Engineering |
| topics[1].display_name | Fault Detection and Control Systems |
| topics[2].id | https://openalex.org/T11062 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9907000064849854 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2210 |
| topics[2].subfield.display_name | Mechanical Engineering |
| topics[2].display_name | Gear and Bearing Dynamics Analysis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C52622490 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6723388433456421 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[0].display_name | Feature extraction |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6167156100273132 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C153180895 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5708801746368408 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[2].display_name | Pattern recognition (psychology) |
| concepts[3].id | https://openalex.org/C106301342 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5094230771064758 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q4117933 |
| concepts[3].display_name | Entropy (arrow of time) |
| concepts[4].id | https://openalex.org/C199978012 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5046128034591675 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1273815 |
| concepts[4].display_name | Bearing (navigation) |
| concepts[5].id | https://openalex.org/C124101348 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5032276511192322 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[5].display_name | Data mining |
| concepts[6].id | https://openalex.org/C12267149 |
| concepts[6].level | 2 |
| concepts[6].score | 0.48325830698013306 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[6].display_name | Support vector machine |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4808564782142639 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C2780155820 |
| concepts[8].level | 3 |
| concepts[8].score | 0.44973647594451904 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1335987 |
| concepts[8].display_name | Rolling-element bearing |
| concepts[9].id | https://openalex.org/C152124472 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4293324053287506 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1204361 |
| concepts[9].display_name | Redundancy (engineering) |
| concepts[10].id | https://openalex.org/C198394728 |
| concepts[10].level | 2 |
| concepts[10].score | 0.363314151763916 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q3695508 |
| concepts[10].display_name | Vibration |
| concepts[11].id | https://openalex.org/C111919701 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[11].display_name | Operating system |
| concepts[12].id | https://openalex.org/C121332964 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[12].display_name | Physics |
| concepts[13].id | https://openalex.org/C62520636 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[13].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/feature-extraction |
| keywords[0].score | 0.6723388433456421 |
| keywords[0].display_name | Feature extraction |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6167156100273132 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/pattern-recognition |
| keywords[2].score | 0.5708801746368408 |
| keywords[2].display_name | Pattern recognition (psychology) |
| keywords[3].id | https://openalex.org/keywords/entropy |
| keywords[3].score | 0.5094230771064758 |
| keywords[3].display_name | Entropy (arrow of time) |
| keywords[4].id | https://openalex.org/keywords/bearing |
| keywords[4].score | 0.5046128034591675 |
| keywords[4].display_name | Bearing (navigation) |
| keywords[5].id | https://openalex.org/keywords/data-mining |
| keywords[5].score | 0.5032276511192322 |
| keywords[5].display_name | Data mining |
| keywords[6].id | https://openalex.org/keywords/support-vector-machine |
| keywords[6].score | 0.48325830698013306 |
| keywords[6].display_name | Support vector machine |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.4808564782142639 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/rolling-element-bearing |
| keywords[8].score | 0.44973647594451904 |
| keywords[8].display_name | Rolling-element bearing |
| keywords[9].id | https://openalex.org/keywords/redundancy |
| keywords[9].score | 0.4293324053287506 |
| keywords[9].display_name | Redundancy (engineering) |
| keywords[10].id | https://openalex.org/keywords/vibration |
| keywords[10].score | 0.363314151763916 |
| keywords[10].display_name | Vibration |
| language | en |
| locations[0].id | doi:10.37965/jdmd.2024.560 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4387279274 |
| locations[0].source.issn | 2831-5308, 2833-650X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2831-5308 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Dynamics Monitoring and Diagnostics |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].source.host_organization_lineage | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://ojs.istp-press.com/dmd/article/download/560/513 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Dynamics, Monitoring and Diagnostics |
| locations[0].landing_page_url | https://doi.org/10.37965/jdmd.2024.560 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5101822704 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2020-0715 |
| authorships[0].author.display_name | Zhixiang Chen |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I143868143 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Electrical Engineering and Automation, Anhui University, Hefei, China |
| authorships[0].institutions[0].id | https://openalex.org/I143868143 |
| authorships[0].institutions[0].ror | https://ror.org/05th6yx34 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I143868143 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Anhui University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhixiang Chen |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Electrical Engineering and Automation, Anhui University, Hefei, China |
| authorships[1].author.id | https://openalex.org/A5100459513 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6937-9958 |
| authorships[1].author.display_name | Hang Wang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].raw_affiliation_string | Smart Grid Digital Collaborative Technology Joint Laboratory of Anhui Province, Hefei, China |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I143868143 |
| authorships[1].affiliations[1].raw_affiliation_string | School of Electrical Engineering and Automation, Anhui University, Hefei, China |
| authorships[1].institutions[0].id | https://openalex.org/I143868143 |
| authorships[1].institutions[0].ror | https://ror.org/05th6yx34 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I143868143 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Anhui University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Hang Wang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Electrical Engineering and Automation, Anhui University, Hefei, China, Smart Grid Digital Collaborative Technology Joint Laboratory of Anhui Province, Hefei, China |
| authorships[2].author.id | https://openalex.org/A5048642180 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8364-4295 |
| authorships[2].author.display_name | Yuanyuan Zhou |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I143868143 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Electrical Engineering and Automation, Anhui University, Hefei, China |
| authorships[2].institutions[0].id | https://openalex.org/I143868143 |
| authorships[2].institutions[0].ror | https://ror.org/05th6yx34 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I143868143 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Anhui University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yuanyuan Zhou |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Electrical Engineering and Automation, Anhui University, Hefei, China |
| authorships[3].author.id | https://openalex.org/A5100397616 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5070-4511 |
| authorships[3].author.display_name | Yang Yang |
| authorships[3].affiliations[0].raw_affiliation_string | China North Vehicle Research Institute, Beijing, China |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yang Yang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | China North Vehicle Research Institute, Beijing, China |
| authorships[4].author.id | https://openalex.org/A5042632260 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-9321-116X |
| authorships[4].author.display_name | Yongbin Liu |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].raw_affiliation_string | Smart Grid Digital Collaborative Technology Joint Laboratory of Anhui Province, Hefei, China |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I143868143 |
| authorships[4].affiliations[1].raw_affiliation_string | School of Electrical Engineering and Automation, Anhui University, Hefei, China |
| authorships[4].institutions[0].id | https://openalex.org/I143868143 |
| authorships[4].institutions[0].ror | https://ror.org/05th6yx34 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I143868143 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Anhui University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Yongbin Liu |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Electrical Engineering and Automation, Anhui University, Hefei, China, Smart Grid Digital Collaborative Technology Joint Laboratory of Anhui Province, Hefei, China |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ojs.istp-press.com/dmd/article/download/560/513 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A multi-scale feature extraction and fusion method for diagnosing bearing faults |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10220 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2207 |
| primary_topic.subfield.display_name | Control and Systems Engineering |
| primary_topic.display_name | Machine Fault Diagnosis Techniques |
| related_works | https://openalex.org/W2340423614, https://openalex.org/W4281808365, https://openalex.org/W3164007574, https://openalex.org/W3215044793, https://openalex.org/W1680985836, https://openalex.org/W2014749401, https://openalex.org/W2047571859, https://openalex.org/W2048545023, https://openalex.org/W2413706530, https://openalex.org/W2186623212 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.37965/jdmd.2024.560 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4387279274 |
| best_oa_location.source.issn | 2831-5308, 2833-650X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2831-5308 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of Dynamics Monitoring and Diagnostics |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.source.host_organization_lineage | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://ojs.istp-press.com/dmd/article/download/560/513 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Dynamics, Monitoring and Diagnostics |
| best_oa_location.landing_page_url | https://doi.org/10.37965/jdmd.2024.560 |
| primary_location.id | doi:10.37965/jdmd.2024.560 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4387279274 |
| primary_location.source.issn | 2831-5308, 2833-650X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2831-5308 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Dynamics Monitoring and Diagnostics |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.source.host_organization_lineage | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://ojs.istp-press.com/dmd/article/download/560/513 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Dynamics, Monitoring and Diagnostics |
| primary_location.landing_page_url | https://doi.org/10.37965/jdmd.2024.560 |
| publication_date | 2024-08-07 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W3068405074, https://openalex.org/W1973048907, https://openalex.org/W2928437110, https://openalex.org/W2972641997, https://openalex.org/W2295194438, https://openalex.org/W3174282553, https://openalex.org/W2904460913, https://openalex.org/W4320713235, https://openalex.org/W2777629765, https://openalex.org/W4383753490, https://openalex.org/W2766285455, https://openalex.org/W2007683166, https://openalex.org/W2792217752, https://openalex.org/W2333775360, https://openalex.org/W2007221293, https://openalex.org/W4283261847, https://openalex.org/W2969224904, https://openalex.org/W4388575284 |
| referenced_works_count | 18 |
| abstract_inverted_index.A | 71 |
| abstract_inverted_index.a | 140 |
| abstract_inverted_index.It | 12 |
| abstract_inverted_index.an | 117 |
| abstract_inverted_index.at | 112 |
| abstract_inverted_index.in | 22, 58, 67, 89 |
| abstract_inverted_index.is | 3, 27, 87, 107, 127, 150 |
| abstract_inverted_index.it | 63 |
| abstract_inverted_index.no | 201 |
| abstract_inverted_index.of | 9, 30, 41, 172, 186, 195, 203 |
| abstract_inverted_index.to | 5, 15, 45, 65, 115, 129, 157, 168 |
| abstract_inverted_index.The | 176, 198 |
| abstract_inverted_index.Two | 163 |
| abstract_inverted_index.and | 19, 101, 138, 189 |
| abstract_inverted_index.are | 43, 96, 166 |
| abstract_inverted_index.can | 13, 182 |
| abstract_inverted_index.for | 76, 134 |
| abstract_inverted_index.raw | 49 |
| abstract_inverted_index.set | 133, 149 |
| abstract_inverted_index.the | 7, 28, 38, 48, 145, 170, 173, 179, 184, 191 |
| abstract_inverted_index.each | 113 |
| abstract_inverted_index.form | 116 |
| abstract_inverted_index.from | 47, 109 |
| abstract_inverted_index.fuse | 130 |
| abstract_inverted_index.hard | 64 |
| abstract_inverted_index.help | 14 |
| abstract_inverted_index.into | 152 |
| abstract_inverted_index.real | 68 |
| abstract_inverted_index.safe | 20 |
| abstract_inverted_index.set. | 120, 143 |
| abstract_inverted_index.this | 90 |
| abstract_inverted_index.time | 60, 69 |
| abstract_inverted_index.(SVM) | 156 |
| abstract_inverted_index.above | 131 |
| abstract_inverted_index.apply | 66 |
| abstract_inverted_index.avoid | 16 |
| abstract_inverted_index.cases | 164 |
| abstract_inverted_index.eigen | 125 |
| abstract_inverted_index.fault | 1 |
| abstract_inverted_index.heath | 8 |
| abstract_inverted_index.input | 151 |
| abstract_inverted_index.joint | 122 |
| abstract_inverted_index.newly | 146 |
| abstract_inverted_index.novel | 72 |
| abstract_inverted_index.scale | 114 |
| abstract_inverted_index.these | 110 |
| abstract_inverted_index.time. | 23 |
| abstract_inverted_index.using | 80 |
| abstract_inverted_index.vital | 4 |
| abstract_inverted_index.work. | 91 |
| abstract_inverted_index.(IESE) | 106 |
| abstract_inverted_index.(JADE) | 126 |
| abstract_inverted_index.First, | 92 |
| abstract_inverted_index.across | 98 |
| abstract_inverted_index.faults | 79 |
| abstract_inverted_index.health | 39, 161 |
| abstract_inverted_index.losses | 18 |
| abstract_inverted_index.making | 62 |
| abstract_inverted_index.method | 75, 181 |
| abstract_inverted_index.status | 40 |
| abstract_inverted_index.vector | 154 |
| abstract_inverted_index.(MIESE) | 86 |
| abstract_inverted_index.Bearing | 0 |
| abstract_inverted_index.applied | 128 |
| abstract_inverted_index.authors | 199 |
| abstract_inverted_index.bearing | 32, 50, 78, 93, 160 |
| abstract_inverted_index.declare | 200 |
| abstract_inverted_index.entropy | 85, 105 |
| abstract_inverted_index.extract | 46 |
| abstract_inverted_index.faults. | 33 |
| abstract_inverted_index.feature | 25, 55, 73, 119, 132, 142, 148 |
| abstract_inverted_index.improve | 183 |
| abstract_inverted_index.method. | 175 |
| abstract_inverted_index.premise | 29 |
| abstract_inverted_index.refined | 141 |
| abstract_inverted_index.results | 57, 177 |
| abstract_inverted_index.scales, | 100 |
| abstract_inverted_index.signals | 95, 111 |
| abstract_inverted_index.status. | 162 |
| abstract_inverted_index.studies | 165 |
| abstract_inverted_index.support | 153 |
| abstract_inverted_index.Conflict | 194 |
| abstract_inverted_index.Finally, | 144 |
| abstract_inverted_index.However, | 34 |
| abstract_inverted_index.Interest | 196 |
| abstract_inverted_index.analyzed | 97 |
| abstract_inverted_index.bearings | 42 |
| abstract_inverted_index.diagnose | 159 |
| abstract_inverted_index.economic | 17 |
| abstract_inverted_index.employed | 167 |
| abstract_inverted_index.envelope | 83, 103 |
| abstract_inverted_index.features | 36, 188 |
| abstract_inverted_index.improved | 82, 102 |
| abstract_inverted_index.increase | 190 |
| abstract_inverted_index.machines | 155 |
| abstract_inverted_index.multiple | 99 |
| abstract_inverted_index.original | 118 |
| abstract_inverted_index.proposed | 88, 174, 180 |
| abstract_inverted_index.rotating | 10 |
| abstract_inverted_index.signals. | 52 |
| abstract_inverted_index.spectrum | 84, 104 |
| abstract_inverted_index.wastage, | 61 |
| abstract_inverted_index.Effective | 24 |
| abstract_inverted_index.Statement | 197 |
| abstract_inverted_index.accidents | 21 |
| abstract_inverted_index.conflicts | 202 |
| abstract_inverted_index.diagnosis | 2 |
| abstract_inverted_index.difficult | 44 |
| abstract_inverted_index.effective | 35 |
| abstract_inverted_index.extracted | 108, 187 |
| abstract_inverted_index.generated | 139, 147 |
| abstract_inverted_index.interest. | 204 |
| abstract_inverted_index.safeguard | 6 |
| abstract_inverted_index.stability | 185 |
| abstract_inverted_index.vibration | 51, 94 |
| abstract_inverted_index.diagnosing | 31, 77 |
| abstract_inverted_index.extraction | 26, 56, 74 |
| abstract_inverted_index.illustrate | 178 |
| abstract_inverted_index.machinery. | 11 |
| abstract_inverted_index.redundancy | 137 |
| abstract_inverted_index.approximate | 123 |
| abstract_inverted_index.demonstrate | 169 |
| abstract_inverted_index.effectively | 135, 158 |
| abstract_inverted_index.efficiency. | 193 |
| abstract_inverted_index.eliminating | 136 |
| abstract_inverted_index.inefficient | 54 |
| abstract_inverted_index.monitoring. | 70 |
| abstract_inverted_index.multi-scale | 81 |
| abstract_inverted_index.reliability | 171 |
| abstract_inverted_index.substantial | 59 |
| abstract_inverted_index.Furthermore, | 53 |
| abstract_inverted_index.Subsequently, | 121 |
| abstract_inverted_index.computational | 192 |
| abstract_inverted_index.characterizing | 37 |
| abstract_inverted_index.diagonalization | 124 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.75833 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |