A multi-scale feature selection approach for predicting benthic assemblages Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1016/j.ecss.2022.108053
Seafloor habitat maps are an important management tool used to delineate distinct regions of the seabed based on their biophysical properties. Spatially continuous bathymetry and backscatter-derived terrain features are commonly used as proxies for environmental conditions and processes that affect species distributions. Multi-scale approaches are increasingly applied to assess the relevant scales at which species co-occur. As the optimal scale(s) may be unknown, features can be calculated at multiple successive scales, yet this results in numerous highly correlated features that may negatively impact model interpretability. To address this increased dimensionality, feature selection approaches can be used to identify the most relevant features. Here, filter and wrapper approaches are assessed to select features from a highly dimensional multi-scale dataset. Terrain features describing the seabed were calculated across ten scales at two coastal sites in Placentia Bay, Newfoundland, Canada. Five species assemblages were identified using ground-truth underwater video sampling. Features predicting the presence of assemblages were assessed using the two selection methods, and the set of chosen features was modelled using three machine learning algorithms: extreme gradient boosting (XGB), random forest (RF), and support vector machines (SVM). The XGB model with features selected by scale-factor from the Boruta wrapper algorithm had the highest accuracy according to cross-validation- (61.67%, kappa 0.49). Bathymetry and terrain attributes were the most important predictors of assemblage occurrence across various analysis scales encompassing both broader and fine-scale variability of the seabed. The proposed feature reduction and selection approach improved the overall accuracy of predictions, and the resulting biological complexity captured in our habitat maps established baseline data for an ecologically significant coastal region.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.ecss.2022.108053
- OA Status
- hybrid
- Cited By
- 28
- References
- 103
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4293660602
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4293660602Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.ecss.2022.108053Digital Object Identifier
- Title
-
A multi-scale feature selection approach for predicting benthic assemblagesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-08-30Full publication date if available
- Authors
-
Shreya Nemani, David Côté, Benjamin Misiuk, Evan Edinger, Julia Mackin-McLaughlin, Adam Templeton, John Shaw, Katleen RobertList of authors in order
- Landing page
-
https://doi.org/10.1016/j.ecss.2022.108053Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.ecss.2022.108053Direct OA link when available
- Concepts
-
Terrain, Feature selection, Interpretability, Scale (ratio), Support vector machine, Random forest, Computer science, Bathymetry, Artificial intelligence, Seabed, Selection (genetic algorithm), Ground truth, Pattern recognition (psychology), Data mining, Remote sensing, Geology, Geography, Cartography, OceanographyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
28Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 8, 2024: 11, 2023: 8, 2022: 1Per-year citation counts (last 5 years)
- References (count)
-
103Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4293660602 |
|---|---|
| doi | https://doi.org/10.1016/j.ecss.2022.108053 |
| ids.doi | https://doi.org/10.1016/j.ecss.2022.108053 |
| ids.openalex | https://openalex.org/W4293660602 |
| fwci | 6.58696375 |
| type | article |
| title | A multi-scale feature selection approach for predicting benthic assemblages |
| biblio.issue | |
| biblio.volume | 277 |
| biblio.last_page | 108053 |
| biblio.first_page | 108053 |
| topics[0].id | https://openalex.org/T11698 |
| topics[0].field.id | https://openalex.org/fields/19 |
| topics[0].field.display_name | Earth and Planetary Sciences |
| topics[0].score | 0.9939000010490417 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1910 |
| topics[0].subfield.display_name | Oceanography |
| topics[0].display_name | Underwater Acoustics Research |
| topics[1].id | https://openalex.org/T10659 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9872999787330627 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2303 |
| topics[1].subfield.display_name | Ecology |
| topics[1].display_name | Marine animal studies overview |
| topics[2].id | https://openalex.org/T10341 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.9837999939918518 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2303 |
| topics[2].subfield.display_name | Ecology |
| topics[2].display_name | Coral and Marine Ecosystems Studies |
| is_xpac | False |
| apc_list.value | 3250 |
| apc_list.currency | USD |
| apc_list.value_usd | 3250 |
| apc_paid.value | 3250 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 3250 |
| concepts[0].id | https://openalex.org/C161840515 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6455804705619812 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q186131 |
| concepts[0].display_name | Terrain |
| concepts[1].id | https://openalex.org/C148483581 |
| concepts[1].level | 2 |
| concepts[1].score | 0.631691038608551 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q446488 |
| concepts[1].display_name | Feature selection |
| concepts[2].id | https://openalex.org/C2781067378 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6244599223136902 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q17027399 |
| concepts[2].display_name | Interpretability |
| concepts[3].id | https://openalex.org/C2778755073 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5682436227798462 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q10858537 |
| concepts[3].display_name | Scale (ratio) |
| concepts[4].id | https://openalex.org/C12267149 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5548080205917358 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[4].display_name | Support vector machine |
| concepts[5].id | https://openalex.org/C169258074 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5277591347694397 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q245748 |
| concepts[5].display_name | Random forest |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.5088624954223633 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C174943157 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4607492685317993 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q810826 |
| concepts[7].display_name | Bathymetry |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.44290003180503845 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| concepts[9].id | https://openalex.org/C33613203 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4388894736766815 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q468469 |
| concepts[9].display_name | Seabed |
| concepts[10].id | https://openalex.org/C81917197 |
| concepts[10].level | 2 |
| concepts[10].score | 0.42232105135917664 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q628760 |
| concepts[10].display_name | Selection (genetic algorithm) |
| concepts[11].id | https://openalex.org/C146849305 |
| concepts[11].level | 2 |
| concepts[11].score | 0.41193607449531555 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q370766 |
| concepts[11].display_name | Ground truth |
| concepts[12].id | https://openalex.org/C153180895 |
| concepts[12].level | 2 |
| concepts[12].score | 0.383220374584198 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[12].display_name | Pattern recognition (psychology) |
| concepts[13].id | https://openalex.org/C124101348 |
| concepts[13].level | 1 |
| concepts[13].score | 0.35210734605789185 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[13].display_name | Data mining |
| concepts[14].id | https://openalex.org/C62649853 |
| concepts[14].level | 1 |
| concepts[14].score | 0.3493049144744873 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[14].display_name | Remote sensing |
| concepts[15].id | https://openalex.org/C127313418 |
| concepts[15].level | 0 |
| concepts[15].score | 0.28476497530937195 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[15].display_name | Geology |
| concepts[16].id | https://openalex.org/C205649164 |
| concepts[16].level | 0 |
| concepts[16].score | 0.22447851300239563 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[16].display_name | Geography |
| concepts[17].id | https://openalex.org/C58640448 |
| concepts[17].level | 1 |
| concepts[17].score | 0.207704097032547 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q42515 |
| concepts[17].display_name | Cartography |
| concepts[18].id | https://openalex.org/C111368507 |
| concepts[18].level | 1 |
| concepts[18].score | 0.1470518410205841 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q43518 |
| concepts[18].display_name | Oceanography |
| keywords[0].id | https://openalex.org/keywords/terrain |
| keywords[0].score | 0.6455804705619812 |
| keywords[0].display_name | Terrain |
| keywords[1].id | https://openalex.org/keywords/feature-selection |
| keywords[1].score | 0.631691038608551 |
| keywords[1].display_name | Feature selection |
| keywords[2].id | https://openalex.org/keywords/interpretability |
| keywords[2].score | 0.6244599223136902 |
| keywords[2].display_name | Interpretability |
| keywords[3].id | https://openalex.org/keywords/scale |
| keywords[3].score | 0.5682436227798462 |
| keywords[3].display_name | Scale (ratio) |
| keywords[4].id | https://openalex.org/keywords/support-vector-machine |
| keywords[4].score | 0.5548080205917358 |
| keywords[4].display_name | Support vector machine |
| keywords[5].id | https://openalex.org/keywords/random-forest |
| keywords[5].score | 0.5277591347694397 |
| keywords[5].display_name | Random forest |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.5088624954223633 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/bathymetry |
| keywords[7].score | 0.4607492685317993 |
| keywords[7].display_name | Bathymetry |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.44290003180503845 |
| keywords[8].display_name | Artificial intelligence |
| keywords[9].id | https://openalex.org/keywords/seabed |
| keywords[9].score | 0.4388894736766815 |
| keywords[9].display_name | Seabed |
| keywords[10].id | https://openalex.org/keywords/selection |
| keywords[10].score | 0.42232105135917664 |
| keywords[10].display_name | Selection (genetic algorithm) |
| keywords[11].id | https://openalex.org/keywords/ground-truth |
| keywords[11].score | 0.41193607449531555 |
| keywords[11].display_name | Ground truth |
| keywords[12].id | https://openalex.org/keywords/pattern-recognition |
| keywords[12].score | 0.383220374584198 |
| keywords[12].display_name | Pattern recognition (psychology) |
| keywords[13].id | https://openalex.org/keywords/data-mining |
| keywords[13].score | 0.35210734605789185 |
| keywords[13].display_name | Data mining |
| keywords[14].id | https://openalex.org/keywords/remote-sensing |
| keywords[14].score | 0.3493049144744873 |
| keywords[14].display_name | Remote sensing |
| keywords[15].id | https://openalex.org/keywords/geology |
| keywords[15].score | 0.28476497530937195 |
| keywords[15].display_name | Geology |
| keywords[16].id | https://openalex.org/keywords/geography |
| keywords[16].score | 0.22447851300239563 |
| keywords[16].display_name | Geography |
| keywords[17].id | https://openalex.org/keywords/cartography |
| keywords[17].score | 0.207704097032547 |
| keywords[17].display_name | Cartography |
| keywords[18].id | https://openalex.org/keywords/oceanography |
| keywords[18].score | 0.1470518410205841 |
| keywords[18].display_name | Oceanography |
| language | en |
| locations[0].id | doi:10.1016/j.ecss.2022.108053 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S43867544 |
| locations[0].source.issn | 0272-7714, 1096-0015 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0272-7714 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Estuarine Coastal and Shelf Science |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Estuarine, Coastal and Shelf Science |
| locations[0].landing_page_url | https://doi.org/10.1016/j.ecss.2022.108053 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5057469272 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Shreya Nemani |
| authorships[0].countries | CA |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I130438778 |
| authorships[0].affiliations[0].raw_affiliation_string | Memorial University, St. John's, NL, Canada |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I130438778 |
| authorships[0].affiliations[1].raw_affiliation_string | Marine Institute - Memorial University, St. John's, NL, Canada |
| authorships[0].institutions[0].id | https://openalex.org/I130438778 |
| authorships[0].institutions[0].ror | https://ror.org/04haebc03 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I130438778 |
| authorships[0].institutions[0].country_code | CA |
| authorships[0].institutions[0].display_name | Memorial University of Newfoundland |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Shreya Nemani |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Marine Institute - Memorial University, St. John's, NL, Canada, Memorial University, St. John's, NL, Canada |
| authorships[1].author.id | https://openalex.org/A5018515203 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5805-5077 |
| authorships[1].author.display_name | David Côté |
| authorships[1].countries | CA |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I1319689352 |
| authorships[1].affiliations[0].raw_affiliation_string | Fisheries and Oceans Canada, St. John's, NL, Canada |
| authorships[1].institutions[0].id | https://openalex.org/I1319689352 |
| authorships[1].institutions[0].ror | https://ror.org/02qa1x782 |
| authorships[1].institutions[0].type | government |
| authorships[1].institutions[0].lineage | https://openalex.org/I1319689352, https://openalex.org/I2802286613 |
| authorships[1].institutions[0].country_code | CA |
| authorships[1].institutions[0].display_name | Fisheries and Oceans Canada |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | David Cote |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Fisheries and Oceans Canada, St. John's, NL, Canada |
| authorships[2].author.id | https://openalex.org/A5082568222 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5822-4574 |
| authorships[2].author.display_name | Benjamin Misiuk |
| authorships[2].countries | CA |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I129902397 |
| authorships[2].affiliations[0].raw_affiliation_string | Dalhousie University, Halifax, NS, Canada |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I130438778 |
| authorships[2].affiliations[1].raw_affiliation_string | Marine Institute - Memorial University, St. John's, NL, Canada |
| authorships[2].institutions[0].id | https://openalex.org/I129902397 |
| authorships[2].institutions[0].ror | https://ror.org/01e6qks80 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I129902397 |
| authorships[2].institutions[0].country_code | CA |
| authorships[2].institutions[0].display_name | Dalhousie University |
| authorships[2].institutions[1].id | https://openalex.org/I130438778 |
| authorships[2].institutions[1].ror | https://ror.org/04haebc03 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I130438778 |
| authorships[2].institutions[1].country_code | CA |
| authorships[2].institutions[1].display_name | Memorial University of Newfoundland |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Benjamin Misiuk |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Dalhousie University, Halifax, NS, Canada, Marine Institute - Memorial University, St. John's, NL, Canada |
| authorships[3].author.id | https://openalex.org/A5083895969 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1659-5809 |
| authorships[3].author.display_name | Evan Edinger |
| authorships[3].countries | CA |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I130438778 |
| authorships[3].affiliations[0].raw_affiliation_string | Memorial University, St. John's, NL, Canada |
| authorships[3].institutions[0].id | https://openalex.org/I130438778 |
| authorships[3].institutions[0].ror | https://ror.org/04haebc03 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I130438778 |
| authorships[3].institutions[0].country_code | CA |
| authorships[3].institutions[0].display_name | Memorial University of Newfoundland |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Evan Edinger |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Memorial University, St. John's, NL, Canada |
| authorships[4].author.id | https://openalex.org/A5048889752 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-3232-4619 |
| authorships[4].author.display_name | Julia Mackin-McLaughlin |
| authorships[4].countries | CA |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I130438778 |
| authorships[4].affiliations[0].raw_affiliation_string | Memorial University, St. John's, NL, Canada |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I130438778 |
| authorships[4].affiliations[1].raw_affiliation_string | Marine Institute - Memorial University, St. John's, NL, Canada |
| authorships[4].institutions[0].id | https://openalex.org/I130438778 |
| authorships[4].institutions[0].ror | https://ror.org/04haebc03 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I130438778 |
| authorships[4].institutions[0].country_code | CA |
| authorships[4].institutions[0].display_name | Memorial University of Newfoundland |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Julia Mackin-McLaughlin |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Marine Institute - Memorial University, St. John's, NL, Canada, Memorial University, St. John's, NL, Canada |
| authorships[5].author.id | https://openalex.org/A5073043482 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Adam Templeton |
| authorships[5].countries | CA |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I130438778 |
| authorships[5].affiliations[0].raw_affiliation_string | Marine Institute - Memorial University, St. John's, NL, Canada |
| authorships[5].institutions[0].id | https://openalex.org/I130438778 |
| authorships[5].institutions[0].ror | https://ror.org/04haebc03 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I130438778 |
| authorships[5].institutions[0].country_code | CA |
| authorships[5].institutions[0].display_name | Memorial University of Newfoundland |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Adam Templeton |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Marine Institute - Memorial University, St. John's, NL, Canada |
| authorships[6].author.id | https://openalex.org/A5102961432 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-4030-5063 |
| authorships[6].author.display_name | John Shaw |
| authorships[6].countries | CA |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I1327020802 |
| authorships[6].affiliations[0].raw_affiliation_string | Geological Survey of Canada – Atlantic Division, Dartmouth, NS, Canada |
| authorships[6].institutions[0].id | https://openalex.org/I1327020802 |
| authorships[6].institutions[0].ror | https://ror.org/03wm7z656 |
| authorships[6].institutions[0].type | government |
| authorships[6].institutions[0].lineage | https://openalex.org/I1281735042, https://openalex.org/I1327020802, https://openalex.org/I2802286613 |
| authorships[6].institutions[0].country_code | CA |
| authorships[6].institutions[0].display_name | Geological Survey of Canada |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | John Shaw |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Geological Survey of Canada – Atlantic Division, Dartmouth, NS, Canada |
| authorships[7].author.id | https://openalex.org/A5065380202 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-0119-5359 |
| authorships[7].author.display_name | Katleen Robert |
| authorships[7].countries | CA |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I130438778 |
| authorships[7].affiliations[0].raw_affiliation_string | Memorial University, St. John's, NL, Canada |
| authorships[7].affiliations[1].institution_ids | https://openalex.org/I130438778 |
| authorships[7].affiliations[1].raw_affiliation_string | Marine Institute - Memorial University, St. John's, NL, Canada |
| authorships[7].institutions[0].id | https://openalex.org/I130438778 |
| authorships[7].institutions[0].ror | https://ror.org/04haebc03 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I130438778 |
| authorships[7].institutions[0].country_code | CA |
| authorships[7].institutions[0].display_name | Memorial University of Newfoundland |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Katleen Robert |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Marine Institute - Memorial University, St. John's, NL, Canada, Memorial University, St. John's, NL, Canada |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.ecss.2022.108053 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A multi-scale feature selection approach for predicting benthic assemblages |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11698 |
| primary_topic.field.id | https://openalex.org/fields/19 |
| primary_topic.field.display_name | Earth and Planetary Sciences |
| primary_topic.score | 0.9939000010490417 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1910 |
| primary_topic.subfield.display_name | Oceanography |
| primary_topic.display_name | Underwater Acoustics Research |
| related_works | https://openalex.org/W2905433371, https://openalex.org/W4390569940, https://openalex.org/W2888392564, https://openalex.org/W4361193272, https://openalex.org/W4310278675, https://openalex.org/W4388422664, https://openalex.org/W2806259446, https://openalex.org/W2963326959, https://openalex.org/W4361806667, https://openalex.org/W4210561017 |
| cited_by_count | 28 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 8 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 11 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 8 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1016/j.ecss.2022.108053 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S43867544 |
| best_oa_location.source.issn | 0272-7714, 1096-0015 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0272-7714 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Estuarine Coastal and Shelf Science |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Estuarine, Coastal and Shelf Science |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.ecss.2022.108053 |
| primary_location.id | doi:10.1016/j.ecss.2022.108053 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S43867544 |
| primary_location.source.issn | 0272-7714, 1096-0015 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0272-7714 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Estuarine Coastal and Shelf Science |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Estuarine, Coastal and Shelf Science |
| primary_location.landing_page_url | https://doi.org/10.1016/j.ecss.2022.108053 |
| publication_date | 2022-08-30 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2168346060, https://openalex.org/W1985642751, https://openalex.org/W2013289113, https://openalex.org/W1516231616, https://openalex.org/W6631915372, https://openalex.org/W2911964244, https://openalex.org/W6675720598, https://openalex.org/W2093811384, https://openalex.org/W2066654966, https://openalex.org/W1965022282, https://openalex.org/W2034012564, https://openalex.org/W2108410184, https://openalex.org/W2791315675, https://openalex.org/W2127419651, https://openalex.org/W6644294489, https://openalex.org/W2053154970, https://openalex.org/W2138973222, https://openalex.org/W2016201976, https://openalex.org/W2795185909, https://openalex.org/W2766438525, https://openalex.org/W129956905, https://openalex.org/W2017522488, https://openalex.org/W1998025025, https://openalex.org/W2061192713, https://openalex.org/W6813943220, https://openalex.org/W1981755063, https://openalex.org/W2015920558, https://openalex.org/W3127053039, https://openalex.org/W4236070523, https://openalex.org/W6719018076, https://openalex.org/W7026422003, https://openalex.org/W2786693279, https://openalex.org/W6649393913, https://openalex.org/W2964551072, https://openalex.org/W2076319752, https://openalex.org/W1990373727, https://openalex.org/W2077922582, https://openalex.org/W6645597426, https://openalex.org/W6697018724, https://openalex.org/W1994122678, https://openalex.org/W2964635321, https://openalex.org/W2959590758, https://openalex.org/W2981670987, https://openalex.org/W2156665896, https://openalex.org/W2946464950, https://openalex.org/W2015527374, https://openalex.org/W2564503284, https://openalex.org/W2191761598, https://openalex.org/W2102831150, https://openalex.org/W2918408501, https://openalex.org/W2100168385, https://openalex.org/W1988449539, https://openalex.org/W2329826029, https://openalex.org/W2077897923, https://openalex.org/W1565635109, https://openalex.org/W3159954457, https://openalex.org/W2788637286, https://openalex.org/W2108230000, https://openalex.org/W2088794999, https://openalex.org/W2589016411, https://openalex.org/W4210469923, https://openalex.org/W2054219720, https://openalex.org/W2088006722, https://openalex.org/W2951580700, https://openalex.org/W1981164448, https://openalex.org/W2795834081, https://openalex.org/W3033017728, https://openalex.org/W2031476130, https://openalex.org/W6649208316, https://openalex.org/W2030956591, https://openalex.org/W2036963473, https://openalex.org/W2938157087, https://openalex.org/W2176955547, https://openalex.org/W2009942915, https://openalex.org/W2112081648, https://openalex.org/W6724868818, https://openalex.org/W2963108714, https://openalex.org/W2768149277, https://openalex.org/W1973139713, https://openalex.org/W2067428383, https://openalex.org/W3082011854, https://openalex.org/W2794425231, https://openalex.org/W2416225213, https://openalex.org/W2022165721, https://openalex.org/W2947465169, https://openalex.org/W3132159031, https://openalex.org/W1990082322, https://openalex.org/W2922656120, https://openalex.org/W2996397240, https://openalex.org/W2101807845, https://openalex.org/W1976025811, https://openalex.org/W2295124130, https://openalex.org/W1980894113, https://openalex.org/W1995772470, https://openalex.org/W1995172412, https://openalex.org/W1949391097, https://openalex.org/W2463160925, https://openalex.org/W1531251320, https://openalex.org/W2504969653, https://openalex.org/W2808574239, https://openalex.org/W649861214, https://openalex.org/W4232225751, https://openalex.org/W2982184779 |
| referenced_works_count | 103 |
| abstract_inverted_index.a | 113 |
| abstract_inverted_index.As | 56 |
| abstract_inverted_index.To | 85 |
| abstract_inverted_index.an | 4, 260 |
| abstract_inverted_index.as | 31 |
| abstract_inverted_index.at | 52, 67, 128 |
| abstract_inverted_index.be | 61, 65, 94 |
| abstract_inverted_index.by | 191 |
| abstract_inverted_index.in | 74, 132, 252 |
| abstract_inverted_index.of | 13, 151, 163, 217, 230, 244 |
| abstract_inverted_index.on | 17 |
| abstract_inverted_index.to | 9, 47, 96, 109, 203 |
| abstract_inverted_index.The | 185, 233 |
| abstract_inverted_index.XGB | 186 |
| abstract_inverted_index.and | 24, 36, 104, 160, 180, 209, 227, 237, 246 |
| abstract_inverted_index.are | 3, 28, 44, 107 |
| abstract_inverted_index.can | 64, 93 |
| abstract_inverted_index.for | 33, 259 |
| abstract_inverted_index.had | 198 |
| abstract_inverted_index.may | 60, 80 |
| abstract_inverted_index.our | 253 |
| abstract_inverted_index.set | 162 |
| abstract_inverted_index.ten | 126 |
| abstract_inverted_index.the | 14, 49, 57, 98, 121, 149, 156, 161, 194, 199, 213, 231, 241, 247 |
| abstract_inverted_index.two | 129, 157 |
| abstract_inverted_index.was | 166 |
| abstract_inverted_index.yet | 71 |
| abstract_inverted_index.Bay, | 134 |
| abstract_inverted_index.Five | 137 |
| abstract_inverted_index.both | 225 |
| abstract_inverted_index.data | 258 |
| abstract_inverted_index.from | 112, 193 |
| abstract_inverted_index.maps | 2, 255 |
| abstract_inverted_index.most | 99, 214 |
| abstract_inverted_index.that | 38, 79 |
| abstract_inverted_index.this | 72, 87 |
| abstract_inverted_index.tool | 7 |
| abstract_inverted_index.used | 8, 30, 95 |
| abstract_inverted_index.were | 123, 140, 153, 212 |
| abstract_inverted_index.with | 188 |
| abstract_inverted_index.(RF), | 179 |
| abstract_inverted_index.Here, | 102 |
| abstract_inverted_index.based | 16 |
| abstract_inverted_index.kappa | 206 |
| abstract_inverted_index.model | 83, 187 |
| abstract_inverted_index.sites | 131 |
| abstract_inverted_index.their | 18 |
| abstract_inverted_index.three | 169 |
| abstract_inverted_index.using | 142, 155, 168 |
| abstract_inverted_index.video | 145 |
| abstract_inverted_index.which | 53 |
| abstract_inverted_index.(SVM). | 184 |
| abstract_inverted_index.(XGB), | 176 |
| abstract_inverted_index.0.49). | 207 |
| abstract_inverted_index.Boruta | 195 |
| abstract_inverted_index.across | 125, 220 |
| abstract_inverted_index.affect | 39 |
| abstract_inverted_index.assess | 48 |
| abstract_inverted_index.chosen | 164 |
| abstract_inverted_index.filter | 103 |
| abstract_inverted_index.forest | 178 |
| abstract_inverted_index.highly | 76, 114 |
| abstract_inverted_index.impact | 82 |
| abstract_inverted_index.random | 177 |
| abstract_inverted_index.scales | 51, 127, 223 |
| abstract_inverted_index.seabed | 15, 122 |
| abstract_inverted_index.select | 110 |
| abstract_inverted_index.vector | 182 |
| abstract_inverted_index.Canada. | 136 |
| abstract_inverted_index.Terrain | 118 |
| abstract_inverted_index.address | 86 |
| abstract_inverted_index.applied | 46 |
| abstract_inverted_index.broader | 226 |
| abstract_inverted_index.coastal | 130, 263 |
| abstract_inverted_index.extreme | 173 |
| abstract_inverted_index.feature | 90, 235 |
| abstract_inverted_index.habitat | 1, 254 |
| abstract_inverted_index.highest | 200 |
| abstract_inverted_index.machine | 170 |
| abstract_inverted_index.optimal | 58 |
| abstract_inverted_index.overall | 242 |
| abstract_inverted_index.proxies | 32 |
| abstract_inverted_index.region. | 264 |
| abstract_inverted_index.regions | 12 |
| abstract_inverted_index.results | 73 |
| abstract_inverted_index.scales, | 70 |
| abstract_inverted_index.seabed. | 232 |
| abstract_inverted_index.species | 40, 54, 138 |
| abstract_inverted_index.support | 181 |
| abstract_inverted_index.terrain | 26, 210 |
| abstract_inverted_index.various | 221 |
| abstract_inverted_index.wrapper | 105, 196 |
| abstract_inverted_index.(61.67%, | 205 |
| abstract_inverted_index.Features | 147 |
| abstract_inverted_index.Seafloor | 0 |
| abstract_inverted_index.accuracy | 201, 243 |
| abstract_inverted_index.analysis | 222 |
| abstract_inverted_index.approach | 239 |
| abstract_inverted_index.assessed | 108, 154 |
| abstract_inverted_index.baseline | 257 |
| abstract_inverted_index.boosting | 175 |
| abstract_inverted_index.captured | 251 |
| abstract_inverted_index.commonly | 29 |
| abstract_inverted_index.dataset. | 117 |
| abstract_inverted_index.distinct | 11 |
| abstract_inverted_index.features | 27, 63, 78, 111, 119, 165, 189 |
| abstract_inverted_index.gradient | 174 |
| abstract_inverted_index.identify | 97 |
| abstract_inverted_index.improved | 240 |
| abstract_inverted_index.learning | 171 |
| abstract_inverted_index.machines | 183 |
| abstract_inverted_index.methods, | 159 |
| abstract_inverted_index.modelled | 167 |
| abstract_inverted_index.multiple | 68 |
| abstract_inverted_index.numerous | 75 |
| abstract_inverted_index.presence | 150 |
| abstract_inverted_index.proposed | 234 |
| abstract_inverted_index.relevant | 50, 100 |
| abstract_inverted_index.scale(s) | 59 |
| abstract_inverted_index.selected | 190 |
| abstract_inverted_index.unknown, | 62 |
| abstract_inverted_index.Placentia | 133 |
| abstract_inverted_index.Spatially | 21 |
| abstract_inverted_index.according | 202 |
| abstract_inverted_index.algorithm | 197 |
| abstract_inverted_index.co-occur. | 55 |
| abstract_inverted_index.delineate | 10 |
| abstract_inverted_index.features. | 101 |
| abstract_inverted_index.important | 5, 215 |
| abstract_inverted_index.increased | 88 |
| abstract_inverted_index.processes | 37 |
| abstract_inverted_index.reduction | 236 |
| abstract_inverted_index.resulting | 248 |
| abstract_inverted_index.sampling. | 146 |
| abstract_inverted_index.selection | 91, 158, 238 |
| abstract_inverted_index.Bathymetry | 208 |
| abstract_inverted_index.approaches | 43, 92, 106 |
| abstract_inverted_index.assemblage | 218 |
| abstract_inverted_index.attributes | 211 |
| abstract_inverted_index.bathymetry | 23 |
| abstract_inverted_index.biological | 249 |
| abstract_inverted_index.calculated | 66, 124 |
| abstract_inverted_index.complexity | 250 |
| abstract_inverted_index.conditions | 35 |
| abstract_inverted_index.continuous | 22 |
| abstract_inverted_index.correlated | 77 |
| abstract_inverted_index.describing | 120 |
| abstract_inverted_index.fine-scale | 228 |
| abstract_inverted_index.identified | 141 |
| abstract_inverted_index.management | 6 |
| abstract_inverted_index.negatively | 81 |
| abstract_inverted_index.occurrence | 219 |
| abstract_inverted_index.predicting | 148 |
| abstract_inverted_index.predictors | 216 |
| abstract_inverted_index.successive | 69 |
| abstract_inverted_index.underwater | 144 |
| abstract_inverted_index.Multi-scale | 42 |
| abstract_inverted_index.algorithms: | 172 |
| abstract_inverted_index.assemblages | 139, 152 |
| abstract_inverted_index.biophysical | 19 |
| abstract_inverted_index.dimensional | 115 |
| abstract_inverted_index.established | 256 |
| abstract_inverted_index.multi-scale | 116 |
| abstract_inverted_index.properties. | 20 |
| abstract_inverted_index.significant | 262 |
| abstract_inverted_index.variability | 229 |
| abstract_inverted_index.ecologically | 261 |
| abstract_inverted_index.encompassing | 224 |
| abstract_inverted_index.ground-truth | 143 |
| abstract_inverted_index.increasingly | 45 |
| abstract_inverted_index.predictions, | 245 |
| abstract_inverted_index.scale-factor | 192 |
| abstract_inverted_index.Newfoundland, | 135 |
| abstract_inverted_index.environmental | 34 |
| abstract_inverted_index.distributions. | 41 |
| abstract_inverted_index.dimensionality, | 89 |
| abstract_inverted_index.cross-validation- | 204 |
| abstract_inverted_index.interpretability. | 84 |
| abstract_inverted_index.backscatter-derived | 25 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5057469272 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 8 |
| corresponding_institution_ids | https://openalex.org/I130438778 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/14 |
| sustainable_development_goals[0].score | 0.8500000238418579 |
| sustainable_development_goals[0].display_name | Life below water |
| citation_normalized_percentile.value | 0.96497331 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |