A Multi-scale Generalized Shrinkage Threshold Network for Image Blind Deblurring in Remote Sensing Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2309.07524
Remote sensing images are essential for many applications of the earth's sciences, but their quality can usually be degraded due to limitations in sensor technology and complex imaging environments. To address this, various remote sensing image deblurring methods have been developed to restore sharp and high-quality images from degraded observational data. However, most traditional model-based deblurring methods usually require predefined {hand-crafted} prior assumptions, which are difficult to handle in complex applications. On the other hand, deep learning-based deblurring methods are often considered as black boxes, lacking transparency and interpretability. In this work, we propose a new blind deblurring learning framework that utilizes alternating iterations of shrinkage thresholds. This framework involves updating blurring kernels and images, with a theoretical foundation in network design. Additionally, we propose a learnable blur kernel proximal mapping module to improve the accuracy of the blur kernel reconstruction. Furthermore, we propose a deep proximal mapping module in the image domain, which combines a generalized shrinkage threshold with a multi-scale prior feature extraction block. This module also incorporates an attention mechanism to learn adaptively the importance of prior information, improving the flexibility and robustness of prior terms, and avoiding limitations similar to hand-crafted image prior terms. Consequently, we design a novel multi-scale generalized shrinkage threshold network (MGSTNet) that focuses specifically on learning deep geometric prior features to enhance image restoration. Experimental results on real and synthetic remote sensing image datasets demonstrate the superiority of our MGSTNet framework compared to existing deblurring methods.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2309.07524
- https://arxiv.org/pdf/2309.07524
- OA Status
- green
- References
- 76
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4386794742
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4386794742Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2309.07524Digital Object Identifier
- Title
-
A Multi-scale Generalized Shrinkage Threshold Network for Image Blind Deblurring in Remote SensingWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-09-14Full publication date if available
- Authors
-
Yujie Feng, Yin Yang, Xiaohong Fan, Zhengpeng Zhang, Jianping ZhangList of authors in order
- Landing page
-
https://arxiv.org/abs/2309.07524Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2309.07524Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2309.07524Direct OA link when available
- Concepts
-
Deblurring, Computer science, Artificial intelligence, Robustness (evolution), Interpretability, Kernel (algebra), Deep learning, Computer vision, Image restoration, Image (mathematics), Pattern recognition (psychology), Image processing, Mathematics, Chemistry, Gene, Combinatorics, BiochemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
76Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4386794742 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2309.07524 |
| ids.doi | https://doi.org/10.48550/arxiv.2309.07524 |
| ids.openalex | https://openalex.org/W4386794742 |
| fwci | 0.0 |
| type | preprint |
| title | A Multi-scale Generalized Shrinkage Threshold Network for Image Blind Deblurring in Remote Sensing |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11105 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9994999766349792 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Image Processing Techniques |
| topics[1].id | https://openalex.org/T10688 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9970999956130981 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Image and Signal Denoising Methods |
| topics[2].id | https://openalex.org/T10500 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9962999820709229 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2206 |
| topics[2].subfield.display_name | Computational Mechanics |
| topics[2].display_name | Sparse and Compressive Sensing Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2777693668 |
| concepts[0].level | 5 |
| concepts[0].score | 0.9818712472915649 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q25053743 |
| concepts[0].display_name | Deblurring |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7340312600135803 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6573747396469116 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C63479239 |
| concepts[3].level | 3 |
| concepts[3].score | 0.6499933004379272 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7353546 |
| concepts[3].display_name | Robustness (evolution) |
| concepts[4].id | https://openalex.org/C2781067378 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5587304830551147 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q17027399 |
| concepts[4].display_name | Interpretability |
| concepts[5].id | https://openalex.org/C74193536 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5359148979187012 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q574844 |
| concepts[5].display_name | Kernel (algebra) |
| concepts[6].id | https://openalex.org/C108583219 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4921650290489197 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[6].display_name | Deep learning |
| concepts[7].id | https://openalex.org/C31972630 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4590015411376953 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[7].display_name | Computer vision |
| concepts[8].id | https://openalex.org/C106430172 |
| concepts[8].level | 4 |
| concepts[8].score | 0.45047128200531006 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q6002272 |
| concepts[8].display_name | Image restoration |
| concepts[9].id | https://openalex.org/C115961682 |
| concepts[9].level | 2 |
| concepts[9].score | 0.3834573030471802 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[9].display_name | Image (mathematics) |
| concepts[10].id | https://openalex.org/C153180895 |
| concepts[10].level | 2 |
| concepts[10].score | 0.3403066396713257 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[10].display_name | Pattern recognition (psychology) |
| concepts[11].id | https://openalex.org/C9417928 |
| concepts[11].level | 3 |
| concepts[11].score | 0.25450843572616577 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1070689 |
| concepts[11].display_name | Image processing |
| concepts[12].id | https://openalex.org/C33923547 |
| concepts[12].level | 0 |
| concepts[12].score | 0.14470398426055908 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[12].display_name | Mathematics |
| concepts[13].id | https://openalex.org/C185592680 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[13].display_name | Chemistry |
| concepts[14].id | https://openalex.org/C104317684 |
| concepts[14].level | 2 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[14].display_name | Gene |
| concepts[15].id | https://openalex.org/C114614502 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[15].display_name | Combinatorics |
| concepts[16].id | https://openalex.org/C55493867 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[16].display_name | Biochemistry |
| keywords[0].id | https://openalex.org/keywords/deblurring |
| keywords[0].score | 0.9818712472915649 |
| keywords[0].display_name | Deblurring |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7340312600135803 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.6573747396469116 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/robustness |
| keywords[3].score | 0.6499933004379272 |
| keywords[3].display_name | Robustness (evolution) |
| keywords[4].id | https://openalex.org/keywords/interpretability |
| keywords[4].score | 0.5587304830551147 |
| keywords[4].display_name | Interpretability |
| keywords[5].id | https://openalex.org/keywords/kernel |
| keywords[5].score | 0.5359148979187012 |
| keywords[5].display_name | Kernel (algebra) |
| keywords[6].id | https://openalex.org/keywords/deep-learning |
| keywords[6].score | 0.4921650290489197 |
| keywords[6].display_name | Deep learning |
| keywords[7].id | https://openalex.org/keywords/computer-vision |
| keywords[7].score | 0.4590015411376953 |
| keywords[7].display_name | Computer vision |
| keywords[8].id | https://openalex.org/keywords/image-restoration |
| keywords[8].score | 0.45047128200531006 |
| keywords[8].display_name | Image restoration |
| keywords[9].id | https://openalex.org/keywords/image |
| keywords[9].score | 0.3834573030471802 |
| keywords[9].display_name | Image (mathematics) |
| keywords[10].id | https://openalex.org/keywords/pattern-recognition |
| keywords[10].score | 0.3403066396713257 |
| keywords[10].display_name | Pattern recognition (psychology) |
| keywords[11].id | https://openalex.org/keywords/image-processing |
| keywords[11].score | 0.25450843572616577 |
| keywords[11].display_name | Image processing |
| keywords[12].id | https://openalex.org/keywords/mathematics |
| keywords[12].score | 0.14470398426055908 |
| keywords[12].display_name | Mathematics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2309.07524 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2309.07524 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2309.07524 |
| locations[1].id | doi:10.48550/arxiv.2309.07524 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article-journal |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2309.07524 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5026039493 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1596-8965 |
| authorships[0].author.display_name | Yujie Feng |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4610292 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Mathematics and Computational Science, Xiangtan University, Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Key Laboratory for Intelligent Com-puting and Information Processing of the Ministry of Education, Xiangtan 411105, China. |
| authorships[0].institutions[0].id | https://openalex.org/I4610292 |
| authorships[0].institutions[0].ror | https://ror.org/00xsfaz62 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I4610292 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Xiangtan University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yujie Feng |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Mathematics and Computational Science, Xiangtan University, Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Key Laboratory for Intelligent Com-puting and Information Processing of the Ministry of Education, Xiangtan 411105, China. |
| authorships[1].author.id | https://openalex.org/A5061103584 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9966-248X |
| authorships[1].author.display_name | Yin Yang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4610292 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Mathematics and Computa-tional Science, Xiangtan University, National Center for Applied Mathematics in Hunan, Hunan International Scientific and Technological Innovation Coop-eration Base of Computational Science, Xiangtan 411105, China. |
| authorships[1].institutions[0].id | https://openalex.org/I4610292 |
| authorships[1].institutions[0].ror | https://ror.org/00xsfaz62 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I4610292 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Xiangtan University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yin Yang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Mathematics and Computa-tional Science, Xiangtan University, National Center for Applied Mathematics in Hunan, Hunan International Scientific and Technological Innovation Coop-eration Base of Computational Science, Xiangtan 411105, China. |
| authorships[2].author.id | https://openalex.org/A5037697156 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0265-7279 |
| authorships[2].author.display_name | Xiaohong Fan |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xiaohong Fan |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5067621240 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-8388-6289 |
| authorships[3].author.display_name | Zhengpeng Zhang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4610292 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Automation and Electronic Information, Xiangtan University, Xiangtan 411105, China. |
| authorships[3].institutions[0].id | https://openalex.org/I4610292 |
| authorships[3].institutions[0].ror | https://ror.org/00xsfaz62 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I4610292 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Xiangtan University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zhengpeng Zhang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Automation and Electronic Information, Xiangtan University, Xiangtan 411105, China. |
| authorships[4].author.id | https://openalex.org/A5076180260 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-2212-5296 |
| authorships[4].author.display_name | Jianping Zhang |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4610292 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Automation and Electronic Information, Xiangtan University, Xiangtan 411105, China. |
| authorships[4].institutions[0].id | https://openalex.org/I4610292 |
| authorships[4].institutions[0].ror | https://ror.org/00xsfaz62 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I4610292 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Xiangtan University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Jianping Zhang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Automation and Electronic Information, Xiangtan University, Xiangtan 411105, China. |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2309.07524 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Multi-scale Generalized Shrinkage Threshold Network for Image Blind Deblurring in Remote Sensing |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11105 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9994999766349792 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Image Processing Techniques |
| related_works | https://openalex.org/W2031788393, https://openalex.org/W791927757, https://openalex.org/W2182590612, https://openalex.org/W2905397092, https://openalex.org/W3034770329, https://openalex.org/W2089488370, https://openalex.org/W3153582293, https://openalex.org/W4220831754, https://openalex.org/W3207832039, https://openalex.org/W2269775642 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2309.07524 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2309.07524 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2309.07524 |
| primary_location.id | pmh:oai:arXiv.org:2309.07524 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2309.07524 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2309.07524 |
| publication_date | 2023-09-14 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W4312381666, https://openalex.org/W2147298660, https://openalex.org/W2142884912, https://openalex.org/W4309158361, https://openalex.org/W2621121458, https://openalex.org/W4386766779, https://openalex.org/W1522301498, https://openalex.org/W4285408072, https://openalex.org/W4387145997, https://openalex.org/W2963312584, https://openalex.org/W3210346746, https://openalex.org/W3188806466, https://openalex.org/W4286374857, https://openalex.org/W2883423620, https://openalex.org/W4225672218, https://openalex.org/W4327811159, https://openalex.org/W4386614535, https://openalex.org/W2474628748, https://openalex.org/W2800388963, https://openalex.org/W2103913786, https://openalex.org/W4382457774, https://openalex.org/W4224130636, https://openalex.org/W4312908055, https://openalex.org/W2111854674, https://openalex.org/W2133665775, https://openalex.org/W4307829984, https://openalex.org/W2056370875, https://openalex.org/W3093844393, https://openalex.org/W2798559986, https://openalex.org/W2141115311, https://openalex.org/W2998785217, https://openalex.org/W2020912318, https://openalex.org/W3155072588, https://openalex.org/W2560533888, https://openalex.org/W3202040256, https://openalex.org/W4388948873, https://openalex.org/W4210626206, https://openalex.org/W4206433182, https://openalex.org/W4360884927, https://openalex.org/W1987075379, https://openalex.org/W4294310997, https://openalex.org/W4377079849, https://openalex.org/W2866634454, https://openalex.org/W4386351485, https://openalex.org/W3191033005, https://openalex.org/W2209874411, https://openalex.org/W2141983208, https://openalex.org/W2512351403, https://openalex.org/W2963182372, https://openalex.org/W3217648369, https://openalex.org/W2097073572, https://openalex.org/W3106758205, https://openalex.org/W3034724715, https://openalex.org/W2046119925, https://openalex.org/W2167307343, https://openalex.org/W3046108465, https://openalex.org/W2982795046, https://openalex.org/W4388328938, https://openalex.org/W4283450732, https://openalex.org/W2114122776, https://openalex.org/W3036167779, https://openalex.org/W3170697543, https://openalex.org/W4377864980, https://openalex.org/W2903901640, https://openalex.org/W4323840373, https://openalex.org/W3000775737, https://openalex.org/W4319792453, https://openalex.org/W4312812783, https://openalex.org/W3048794210, https://openalex.org/W3213759681, https://openalex.org/W3105577662, https://openalex.org/W3172472472, https://openalex.org/W4307771774, https://openalex.org/W3204868769, https://openalex.org/W2964101377, https://openalex.org/W3204971388 |
| referenced_works_count | 76 |
| abstract_inverted_index.a | 94, 116, 125, 144, 155, 160, 201 |
| abstract_inverted_index.In | 89 |
| abstract_inverted_index.On | 71 |
| abstract_inverted_index.To | 29 |
| abstract_inverted_index.an | 170 |
| abstract_inverted_index.as | 82 |
| abstract_inverted_index.be | 17 |
| abstract_inverted_index.in | 22, 68, 119, 149 |
| abstract_inverted_index.of | 8, 104, 136, 178, 186, 235 |
| abstract_inverted_index.on | 212, 224 |
| abstract_inverted_index.to | 20, 41, 66, 132, 173, 193, 218, 240 |
| abstract_inverted_index.we | 92, 123, 142, 199 |
| abstract_inverted_index.and | 25, 44, 87, 113, 184, 189, 226 |
| abstract_inverted_index.are | 3, 64, 79 |
| abstract_inverted_index.but | 12 |
| abstract_inverted_index.can | 15 |
| abstract_inverted_index.due | 19 |
| abstract_inverted_index.for | 5 |
| abstract_inverted_index.new | 95 |
| abstract_inverted_index.our | 236 |
| abstract_inverted_index.the | 9, 72, 134, 137, 150, 176, 182, 233 |
| abstract_inverted_index.This | 107, 166 |
| abstract_inverted_index.also | 168 |
| abstract_inverted_index.been | 39 |
| abstract_inverted_index.blur | 127, 138 |
| abstract_inverted_index.deep | 75, 145, 214 |
| abstract_inverted_index.from | 47 |
| abstract_inverted_index.have | 38 |
| abstract_inverted_index.many | 6 |
| abstract_inverted_index.most | 52 |
| abstract_inverted_index.real | 225 |
| abstract_inverted_index.that | 100, 209 |
| abstract_inverted_index.this | 90 |
| abstract_inverted_index.with | 115, 159 |
| abstract_inverted_index.black | 83 |
| abstract_inverted_index.blind | 96 |
| abstract_inverted_index.data. | 50 |
| abstract_inverted_index.hand, | 74 |
| abstract_inverted_index.image | 35, 151, 195, 220, 230 |
| abstract_inverted_index.learn | 174 |
| abstract_inverted_index.novel | 202 |
| abstract_inverted_index.often | 80 |
| abstract_inverted_index.other | 73 |
| abstract_inverted_index.prior | 61, 162, 179, 187, 196, 216 |
| abstract_inverted_index.sharp | 43 |
| abstract_inverted_index.their | 13 |
| abstract_inverted_index.this, | 31 |
| abstract_inverted_index.which | 63, 153 |
| abstract_inverted_index.work, | 91 |
| abstract_inverted_index.Remote | 0 |
| abstract_inverted_index.block. | 165 |
| abstract_inverted_index.boxes, | 84 |
| abstract_inverted_index.design | 200 |
| abstract_inverted_index.handle | 67 |
| abstract_inverted_index.images | 2, 46 |
| abstract_inverted_index.kernel | 128, 139 |
| abstract_inverted_index.module | 131, 148, 167 |
| abstract_inverted_index.remote | 33, 228 |
| abstract_inverted_index.sensor | 23 |
| abstract_inverted_index.terms, | 188 |
| abstract_inverted_index.terms. | 197 |
| abstract_inverted_index.MGSTNet | 237 |
| abstract_inverted_index.address | 30 |
| abstract_inverted_index.complex | 26, 69 |
| abstract_inverted_index.design. | 121 |
| abstract_inverted_index.domain, | 152 |
| abstract_inverted_index.earth's | 10 |
| abstract_inverted_index.enhance | 219 |
| abstract_inverted_index.feature | 163 |
| abstract_inverted_index.focuses | 210 |
| abstract_inverted_index.images, | 114 |
| abstract_inverted_index.imaging | 27 |
| abstract_inverted_index.improve | 133 |
| abstract_inverted_index.kernels | 112 |
| abstract_inverted_index.lacking | 85 |
| abstract_inverted_index.mapping | 130, 147 |
| abstract_inverted_index.methods | 37, 56, 78 |
| abstract_inverted_index.network | 120, 207 |
| abstract_inverted_index.propose | 93, 124, 143 |
| abstract_inverted_index.quality | 14 |
| abstract_inverted_index.require | 58 |
| abstract_inverted_index.restore | 42 |
| abstract_inverted_index.results | 223 |
| abstract_inverted_index.sensing | 1, 34, 229 |
| abstract_inverted_index.similar | 192 |
| abstract_inverted_index.usually | 16, 57 |
| abstract_inverted_index.various | 32 |
| abstract_inverted_index.However, | 51 |
| abstract_inverted_index.accuracy | 135 |
| abstract_inverted_index.avoiding | 190 |
| abstract_inverted_index.blurring | 111 |
| abstract_inverted_index.combines | 154 |
| abstract_inverted_index.compared | 239 |
| abstract_inverted_index.datasets | 231 |
| abstract_inverted_index.degraded | 18, 48 |
| abstract_inverted_index.existing | 241 |
| abstract_inverted_index.features | 217 |
| abstract_inverted_index.involves | 109 |
| abstract_inverted_index.learning | 98, 213 |
| abstract_inverted_index.methods. | 243 |
| abstract_inverted_index.proximal | 129, 146 |
| abstract_inverted_index.updating | 110 |
| abstract_inverted_index.utilizes | 101 |
| abstract_inverted_index.(MGSTNet) | 208 |
| abstract_inverted_index.attention | 171 |
| abstract_inverted_index.developed | 40 |
| abstract_inverted_index.difficult | 65 |
| abstract_inverted_index.essential | 4 |
| abstract_inverted_index.framework | 99, 108, 238 |
| abstract_inverted_index.geometric | 215 |
| abstract_inverted_index.improving | 181 |
| abstract_inverted_index.learnable | 126 |
| abstract_inverted_index.mechanism | 172 |
| abstract_inverted_index.sciences, | 11 |
| abstract_inverted_index.shrinkage | 105, 157, 205 |
| abstract_inverted_index.synthetic | 227 |
| abstract_inverted_index.threshold | 158, 206 |
| abstract_inverted_index.adaptively | 175 |
| abstract_inverted_index.considered | 81 |
| abstract_inverted_index.deblurring | 36, 55, 77, 97, 242 |
| abstract_inverted_index.extraction | 164 |
| abstract_inverted_index.foundation | 118 |
| abstract_inverted_index.importance | 177 |
| abstract_inverted_index.iterations | 103 |
| abstract_inverted_index.predefined | 59 |
| abstract_inverted_index.robustness | 185 |
| abstract_inverted_index.technology | 24 |
| abstract_inverted_index.alternating | 102 |
| abstract_inverted_index.demonstrate | 232 |
| abstract_inverted_index.flexibility | 183 |
| abstract_inverted_index.generalized | 156, 204 |
| abstract_inverted_index.limitations | 21, 191 |
| abstract_inverted_index.model-based | 54 |
| abstract_inverted_index.multi-scale | 161, 203 |
| abstract_inverted_index.superiority | 234 |
| abstract_inverted_index.theoretical | 117 |
| abstract_inverted_index.thresholds. | 106 |
| abstract_inverted_index.traditional | 53 |
| abstract_inverted_index.Experimental | 222 |
| abstract_inverted_index.Furthermore, | 141 |
| abstract_inverted_index.applications | 7 |
| abstract_inverted_index.assumptions, | 62 |
| abstract_inverted_index.hand-crafted | 194 |
| abstract_inverted_index.high-quality | 45 |
| abstract_inverted_index.incorporates | 169 |
| abstract_inverted_index.information, | 180 |
| abstract_inverted_index.restoration. | 221 |
| abstract_inverted_index.specifically | 211 |
| abstract_inverted_index.transparency | 86 |
| abstract_inverted_index.Additionally, | 122 |
| abstract_inverted_index.Consequently, | 198 |
| abstract_inverted_index.applications. | 70 |
| abstract_inverted_index.environments. | 28 |
| abstract_inverted_index.observational | 49 |
| abstract_inverted_index.learning-based | 76 |
| abstract_inverted_index.{hand-crafted} | 60 |
| abstract_inverted_index.reconstruction. | 140 |
| abstract_inverted_index.interpretability. | 88 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.13241729 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |