A Multi-Target Electric Field Location Algorithm for Underwater Electrosense Robots Based on Sparse Bayesian Learning Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.31875/2409-9694.2024.11.11
Extremely Low Frequency (ELF) electric field signal provides a novel and promising solution to the target location problem due to its strong resistance to jamming and long propagation range. However, conventional algorithms such as Multiple Signal Classification (MUSIC) often rely heavily on accurate prior information. In this paper, we propose a novel underwater electric field location algorithm to accurately locate an unknown number of targets. This paper constructs a complete output model of electric field detection array in the spatial domain based on Sparse Bayesian Learning (SBL), and transforms the target location problem into sparse signal reconstruction problem. The experimental results demonstrate the effectiveness of the proposed method and its advantages over the MUSIC algorithm. The proposed location algorithm is capable of accurately locating an unknown number of ships and other targets.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.31875/2409-9694.2024.11.11
- OA Status
- diamond
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4405907857
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4405907857Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.31875/2409-9694.2024.11.11Digital Object Identifier
- Title
-
A Multi-Target Electric Field Location Algorithm for Underwater Electrosense Robots Based on Sparse Bayesian LearningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-12-30Full publication date if available
- Authors
-
Shuo Li, Rui Fan, Guangyu Jiang, Yi Rong, Bing Han, Zicai Zhu, Hu QiaoList of authors in order
- Landing page
-
https://doi.org/10.31875/2409-9694.2024.11.11Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.31875/2409-9694.2024.11.11Direct OA link when available
- Concepts
-
Underwater, Bayesian probability, Computer science, Artificial intelligence, Field (mathematics), Electric field, Algorithm, Robot, Bayesian inference, Computer vision, Mathematics, Physics, Geology, Oceanography, Quantum mechanics, Pure mathematicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4405907857 |
|---|---|
| doi | https://doi.org/10.31875/2409-9694.2024.11.11 |
| ids.doi | https://doi.org/10.31875/2409-9694.2024.11.11 |
| ids.openalex | https://openalex.org/W4405907857 |
| fwci | 0.0 |
| type | article |
| title | A Multi-Target Electric Field Location Algorithm for Underwater Electrosense Robots Based on Sparse Bayesian Learning |
| biblio.issue | |
| biblio.volume | 11 |
| biblio.last_page | 137 |
| biblio.first_page | 129 |
| topics[0].id | https://openalex.org/T11192 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9939000010490417 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2212 |
| topics[0].subfield.display_name | Ocean Engineering |
| topics[0].display_name | Underwater Vehicles and Communication Systems |
| topics[1].id | https://openalex.org/T12697 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9933000206947327 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2312 |
| topics[1].subfield.display_name | Water Science and Technology |
| topics[1].display_name | Water Quality Monitoring Technologies |
| topics[2].id | https://openalex.org/T12784 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9041000008583069 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2210 |
| topics[2].subfield.display_name | Mechanical Engineering |
| topics[2].display_name | Modular Robots and Swarm Intelligence |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C98083399 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6931969523429871 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q3246517 |
| concepts[0].display_name | Underwater |
| concepts[1].id | https://openalex.org/C107673813 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6003203988075256 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[1].display_name | Bayesian probability |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5821855664253235 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5324262976646423 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C9652623 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5000765323638916 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q190109 |
| concepts[4].display_name | Field (mathematics) |
| concepts[5].id | https://openalex.org/C60799052 |
| concepts[5].level | 2 |
| concepts[5].score | 0.47534725069999695 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q46221 |
| concepts[5].display_name | Electric field |
| concepts[6].id | https://openalex.org/C11413529 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4683707654476166 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[6].display_name | Algorithm |
| concepts[7].id | https://openalex.org/C90509273 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4623689651489258 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11012 |
| concepts[7].display_name | Robot |
| concepts[8].id | https://openalex.org/C160234255 |
| concepts[8].level | 3 |
| concepts[8].score | 0.44308382272720337 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q812535 |
| concepts[8].display_name | Bayesian inference |
| concepts[9].id | https://openalex.org/C31972630 |
| concepts[9].level | 1 |
| concepts[9].score | 0.352035790681839 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[9].display_name | Computer vision |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.17126697301864624 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C121332964 |
| concepts[11].level | 0 |
| concepts[11].score | 0.11300027370452881 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[11].display_name | Physics |
| concepts[12].id | https://openalex.org/C127313418 |
| concepts[12].level | 0 |
| concepts[12].score | 0.10308286547660828 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[12].display_name | Geology |
| concepts[13].id | https://openalex.org/C111368507 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q43518 |
| concepts[13].display_name | Oceanography |
| concepts[14].id | https://openalex.org/C62520636 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[14].display_name | Quantum mechanics |
| concepts[15].id | https://openalex.org/C202444582 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[15].display_name | Pure mathematics |
| keywords[0].id | https://openalex.org/keywords/underwater |
| keywords[0].score | 0.6931969523429871 |
| keywords[0].display_name | Underwater |
| keywords[1].id | https://openalex.org/keywords/bayesian-probability |
| keywords[1].score | 0.6003203988075256 |
| keywords[1].display_name | Bayesian probability |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5821855664253235 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5324262976646423 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/field |
| keywords[4].score | 0.5000765323638916 |
| keywords[4].display_name | Field (mathematics) |
| keywords[5].id | https://openalex.org/keywords/electric-field |
| keywords[5].score | 0.47534725069999695 |
| keywords[5].display_name | Electric field |
| keywords[6].id | https://openalex.org/keywords/algorithm |
| keywords[6].score | 0.4683707654476166 |
| keywords[6].display_name | Algorithm |
| keywords[7].id | https://openalex.org/keywords/robot |
| keywords[7].score | 0.4623689651489258 |
| keywords[7].display_name | Robot |
| keywords[8].id | https://openalex.org/keywords/bayesian-inference |
| keywords[8].score | 0.44308382272720337 |
| keywords[8].display_name | Bayesian inference |
| keywords[9].id | https://openalex.org/keywords/computer-vision |
| keywords[9].score | 0.352035790681839 |
| keywords[9].display_name | Computer vision |
| keywords[10].id | https://openalex.org/keywords/mathematics |
| keywords[10].score | 0.17126697301864624 |
| keywords[10].display_name | Mathematics |
| keywords[11].id | https://openalex.org/keywords/physics |
| keywords[11].score | 0.11300027370452881 |
| keywords[11].display_name | Physics |
| keywords[12].id | https://openalex.org/keywords/geology |
| keywords[12].score | 0.10308286547660828 |
| keywords[12].display_name | Geology |
| language | en |
| locations[0].id | doi:10.31875/2409-9694.2024.11.11 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210221614 |
| locations[0].source.issn | 2409-9694 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2409-9694 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Journal of Robotics and Automation Technology |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Robotics and Automation Technology |
| locations[0].landing_page_url | https://doi.org/10.31875/2409-9694.2024.11.11 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5102028137 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7787-8741 |
| authorships[0].author.display_name | Shuo Li |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Shuo Li |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5076060162 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0643-6505 |
| authorships[1].author.display_name | Rui Fan |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Renhui Fan |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5034251097 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1141-1019 |
| authorships[2].author.display_name | Guangyu Jiang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Guangyu Jiang |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5083147441 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-2620-1893 |
| authorships[3].author.display_name | Yi Rong |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yi Rong |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5014021723 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-7915-7454 |
| authorships[4].author.display_name | Bing Han |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Binya Han |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5008010915 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-4546-7213 |
| authorships[5].author.display_name | Zicai Zhu |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Zicai Zhu |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5006826313 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-2323-4881 |
| authorships[6].author.display_name | Hu Qiao |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Qiao Hu |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.31875/2409-9694.2024.11.11 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Multi-Target Electric Field Location Algorithm for Underwater Electrosense Robots Based on Sparse Bayesian Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11192 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9939000010490417 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2212 |
| primary_topic.subfield.display_name | Ocean Engineering |
| primary_topic.display_name | Underwater Vehicles and Communication Systems |
| related_works | https://openalex.org/W2407375987, https://openalex.org/W3049691116, https://openalex.org/W2505726097, https://openalex.org/W2950975704, https://openalex.org/W2010643158, https://openalex.org/W2106867672, https://openalex.org/W4310268968, https://openalex.org/W4297815943, https://openalex.org/W2053745677, https://openalex.org/W2189378472 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.31875/2409-9694.2024.11.11 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210221614 |
| best_oa_location.source.issn | 2409-9694 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2409-9694 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Journal of Robotics and Automation Technology |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Robotics and Automation Technology |
| best_oa_location.landing_page_url | https://doi.org/10.31875/2409-9694.2024.11.11 |
| primary_location.id | doi:10.31875/2409-9694.2024.11.11 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210221614 |
| primary_location.source.issn | 2409-9694 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2409-9694 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Journal of Robotics and Automation Technology |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Robotics and Automation Technology |
| primary_location.landing_page_url | https://doi.org/10.31875/2409-9694.2024.11.11 |
| publication_date | 2024-12-30 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 8, 50, 68 |
| abstract_inverted_index.In | 45 |
| abstract_inverted_index.an | 60, 124 |
| abstract_inverted_index.as | 33 |
| abstract_inverted_index.in | 77 |
| abstract_inverted_index.is | 119 |
| abstract_inverted_index.of | 63, 72, 104, 121, 127 |
| abstract_inverted_index.on | 41, 82 |
| abstract_inverted_index.to | 13, 19, 23, 57 |
| abstract_inverted_index.we | 48 |
| abstract_inverted_index.Low | 1 |
| abstract_inverted_index.The | 98, 115 |
| abstract_inverted_index.and | 10, 25, 87, 108, 129 |
| abstract_inverted_index.due | 18 |
| abstract_inverted_index.its | 20, 109 |
| abstract_inverted_index.the | 14, 78, 89, 102, 105, 112 |
| abstract_inverted_index.This | 65 |
| abstract_inverted_index.into | 93 |
| abstract_inverted_index.long | 26 |
| abstract_inverted_index.over | 111 |
| abstract_inverted_index.rely | 39 |
| abstract_inverted_index.such | 32 |
| abstract_inverted_index.this | 46 |
| abstract_inverted_index.(ELF) | 3 |
| abstract_inverted_index.MUSIC | 113 |
| abstract_inverted_index.array | 76 |
| abstract_inverted_index.based | 81 |
| abstract_inverted_index.field | 5, 54, 74 |
| abstract_inverted_index.model | 71 |
| abstract_inverted_index.novel | 9, 51 |
| abstract_inverted_index.often | 38 |
| abstract_inverted_index.other | 130 |
| abstract_inverted_index.paper | 66 |
| abstract_inverted_index.prior | 43 |
| abstract_inverted_index.ships | 128 |
| abstract_inverted_index.(SBL), | 86 |
| abstract_inverted_index.Signal | 35 |
| abstract_inverted_index.Sparse | 83 |
| abstract_inverted_index.domain | 80 |
| abstract_inverted_index.locate | 59 |
| abstract_inverted_index.method | 107 |
| abstract_inverted_index.number | 62, 126 |
| abstract_inverted_index.output | 70 |
| abstract_inverted_index.paper, | 47 |
| abstract_inverted_index.range. | 28 |
| abstract_inverted_index.signal | 6, 95 |
| abstract_inverted_index.sparse | 94 |
| abstract_inverted_index.strong | 21 |
| abstract_inverted_index.target | 15, 90 |
| abstract_inverted_index.(MUSIC) | 37 |
| abstract_inverted_index.capable | 120 |
| abstract_inverted_index.heavily | 40 |
| abstract_inverted_index.jamming | 24 |
| abstract_inverted_index.problem | 17, 92 |
| abstract_inverted_index.propose | 49 |
| abstract_inverted_index.results | 100 |
| abstract_inverted_index.spatial | 79 |
| abstract_inverted_index.unknown | 61, 125 |
| abstract_inverted_index.Bayesian | 84 |
| abstract_inverted_index.However, | 29 |
| abstract_inverted_index.Learning | 85 |
| abstract_inverted_index.Multiple | 34 |
| abstract_inverted_index.accurate | 42 |
| abstract_inverted_index.complete | 69 |
| abstract_inverted_index.electric | 4, 53, 73 |
| abstract_inverted_index.locating | 123 |
| abstract_inverted_index.location | 16, 55, 91, 117 |
| abstract_inverted_index.problem. | 97 |
| abstract_inverted_index.proposed | 106, 116 |
| abstract_inverted_index.provides | 7 |
| abstract_inverted_index.solution | 12 |
| abstract_inverted_index.targets. | 64, 131 |
| abstract_inverted_index.Extremely | 0 |
| abstract_inverted_index.Frequency | 2 |
| abstract_inverted_index.algorithm | 56, 118 |
| abstract_inverted_index.detection | 75 |
| abstract_inverted_index.promising | 11 |
| abstract_inverted_index.accurately | 58, 122 |
| abstract_inverted_index.advantages | 110 |
| abstract_inverted_index.algorithm. | 114 |
| abstract_inverted_index.algorithms | 31 |
| abstract_inverted_index.constructs | 67 |
| abstract_inverted_index.resistance | 22 |
| abstract_inverted_index.transforms | 88 |
| abstract_inverted_index.underwater | 52 |
| abstract_inverted_index.demonstrate | 101 |
| abstract_inverted_index.propagation | 27 |
| abstract_inverted_index.conventional | 30 |
| abstract_inverted_index.experimental | 99 |
| abstract_inverted_index.information. | 44 |
| abstract_inverted_index.effectiveness | 103 |
| abstract_inverted_index.Classification | 36 |
| abstract_inverted_index.reconstruction | 96 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/14 |
| sustainable_development_goals[0].score | 0.699999988079071 |
| sustainable_development_goals[0].display_name | Life below water |
| citation_normalized_percentile.value | 0.38939312 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |