A Multiscale Cross Interaction Attention Network for Hyperspectral Image Classification Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.3390/rs15020428
Convolutional neural networks (CNNs) have demonstrated impressive performance and have been broadly applied in hyperspectral image (HSI) classification. However, two challenging problems still exist: the first challenge is that redundant information is averse to feature learning, which damages the classification performance; the second challenge is that most of the existing classification methods only focus on single-scale feature extraction, resulting in underutilization of information. To resolve the two preceding issues, this article proposes a multiscale cross interaction attention network (MCIANet) for HSI classification. First, an interaction attention module (IAM) is designed to highlight the distinguishability of HSI and dispel redundant information. Then, a multiscale cross feature extraction module (MCFEM) is constructed to detect spectral–spatial features at different scales, convolutional layers, and branches, which can increase the diversity of spectral–spatial features. Finally, we introduce global average pooling to compress multiscale spectral–spatial features and utilize two fully connection layers, two dropout layers to obtain the output classification results. Massive experiments on three benchmark datasets demonstrate the superiority of our presented method compared with the state-of-the-art methods.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/rs15020428
- https://www.mdpi.com/2072-4292/15/2/428/pdf?version=1674011379
- OA Status
- gold
- Cited By
- 7
- References
- 81
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4315568068
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4315568068Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/rs15020428Digital Object Identifier
- Title
-
A Multiscale Cross Interaction Attention Network for Hyperspectral Image ClassificationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-01-10Full publication date if available
- Authors
-
Dongxu Liu, Yirui Wang, Peixun Liu, Qingqing Li, Hang Yang, Dianbing Chen, Zhichao Liu, Guangliang HanList of authors in order
- Landing page
-
https://doi.org/10.3390/rs15020428Publisher landing page
- PDF URL
-
https://www.mdpi.com/2072-4292/15/2/428/pdf?version=1674011379Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2072-4292/15/2/428/pdf?version=1674011379Direct OA link when available
- Concepts
-
Computer science, Pattern recognition (psychology), Artificial intelligence, Convolutional neural network, Pooling, Hyperspectral imaging, Benchmark (surveying), Feature (linguistics), Feature extraction, Dropout (neural networks), Focus (optics), Machine learning, Optics, Physics, Geography, Linguistics, Philosophy, GeodesyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
7Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4, 2024: 3Per-year citation counts (last 5 years)
- References (count)
-
81Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4315568068 |
|---|---|
| doi | https://doi.org/10.3390/rs15020428 |
| ids.doi | https://doi.org/10.3390/rs15020428 |
| ids.openalex | https://openalex.org/W4315568068 |
| fwci | 1.51975777 |
| type | article |
| title | A Multiscale Cross Interaction Attention Network for Hyperspectral Image Classification |
| awards[0].id | https://openalex.org/G175063211 |
| awards[0].funder_id | https://openalex.org/F4320327282 |
| awards[0].display_name | |
| awards[0].funder_award_id | 20210201132GX |
| awards[0].funder_display_name | Department of Science and Technology of Jilin Province |
| biblio.issue | 2 |
| biblio.volume | 15 |
| biblio.last_page | 428 |
| biblio.first_page | 428 |
| topics[0].id | https://openalex.org/T10689 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2214 |
| topics[0].subfield.display_name | Media Technology |
| topics[0].display_name | Remote-Sensing Image Classification |
| topics[1].id | https://openalex.org/T13890 |
| topics[1].field.id | https://openalex.org/fields/19 |
| topics[1].field.display_name | Earth and Planetary Sciences |
| topics[1].score | 0.9722999930381775 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1902 |
| topics[1].subfield.display_name | Atmospheric Science |
| topics[1].display_name | Remote Sensing and Land Use |
| topics[2].id | https://openalex.org/T11659 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9679999947547913 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2214 |
| topics[2].subfield.display_name | Media Technology |
| topics[2].display_name | Advanced Image Fusion Techniques |
| funders[0].id | https://openalex.org/F4320327282 |
| funders[0].ror | |
| funders[0].display_name | Department of Science and Technology of Jilin Province |
| is_xpac | False |
| apc_list.value | 2500 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2707 |
| apc_paid.value | 2500 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2707 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8030779361724854 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C153180895 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6685861349105835 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[1].display_name | Pattern recognition (psychology) |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6495074033737183 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C81363708 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5663520693778992 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[3].display_name | Convolutional neural network |
| concepts[4].id | https://openalex.org/C70437156 |
| concepts[4].level | 2 |
| concepts[4].score | 0.553595781326294 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7228652 |
| concepts[4].display_name | Pooling |
| concepts[5].id | https://openalex.org/C159078339 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5216667652130127 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q959005 |
| concepts[5].display_name | Hyperspectral imaging |
| concepts[6].id | https://openalex.org/C185798385 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5165551900863647 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[6].display_name | Benchmark (surveying) |
| concepts[7].id | https://openalex.org/C2776401178 |
| concepts[7].level | 2 |
| concepts[7].score | 0.49843621253967285 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[7].display_name | Feature (linguistics) |
| concepts[8].id | https://openalex.org/C52622490 |
| concepts[8].level | 2 |
| concepts[8].score | 0.47605133056640625 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[8].display_name | Feature extraction |
| concepts[9].id | https://openalex.org/C2776145597 |
| concepts[9].level | 2 |
| concepts[9].score | 0.45287948846817017 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q25339462 |
| concepts[9].display_name | Dropout (neural networks) |
| concepts[10].id | https://openalex.org/C192209626 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4417564868927002 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q190909 |
| concepts[10].display_name | Focus (optics) |
| concepts[11].id | https://openalex.org/C119857082 |
| concepts[11].level | 1 |
| concepts[11].score | 0.2769673764705658 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[11].display_name | Machine learning |
| concepts[12].id | https://openalex.org/C120665830 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[12].display_name | Optics |
| concepts[13].id | https://openalex.org/C121332964 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[13].display_name | Physics |
| concepts[14].id | https://openalex.org/C205649164 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[14].display_name | Geography |
| concepts[15].id | https://openalex.org/C41895202 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[15].display_name | Linguistics |
| concepts[16].id | https://openalex.org/C138885662 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[16].display_name | Philosophy |
| concepts[17].id | https://openalex.org/C13280743 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[17].display_name | Geodesy |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8030779361724854 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/pattern-recognition |
| keywords[1].score | 0.6685861349105835 |
| keywords[1].display_name | Pattern recognition (psychology) |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.6495074033737183 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[3].score | 0.5663520693778992 |
| keywords[3].display_name | Convolutional neural network |
| keywords[4].id | https://openalex.org/keywords/pooling |
| keywords[4].score | 0.553595781326294 |
| keywords[4].display_name | Pooling |
| keywords[5].id | https://openalex.org/keywords/hyperspectral-imaging |
| keywords[5].score | 0.5216667652130127 |
| keywords[5].display_name | Hyperspectral imaging |
| keywords[6].id | https://openalex.org/keywords/benchmark |
| keywords[6].score | 0.5165551900863647 |
| keywords[6].display_name | Benchmark (surveying) |
| keywords[7].id | https://openalex.org/keywords/feature |
| keywords[7].score | 0.49843621253967285 |
| keywords[7].display_name | Feature (linguistics) |
| keywords[8].id | https://openalex.org/keywords/feature-extraction |
| keywords[8].score | 0.47605133056640625 |
| keywords[8].display_name | Feature extraction |
| keywords[9].id | https://openalex.org/keywords/dropout |
| keywords[9].score | 0.45287948846817017 |
| keywords[9].display_name | Dropout (neural networks) |
| keywords[10].id | https://openalex.org/keywords/focus |
| keywords[10].score | 0.4417564868927002 |
| keywords[10].display_name | Focus (optics) |
| keywords[11].id | https://openalex.org/keywords/machine-learning |
| keywords[11].score | 0.2769673764705658 |
| keywords[11].display_name | Machine learning |
| language | en |
| locations[0].id | doi:10.3390/rs15020428 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S43295729 |
| locations[0].source.issn | 2072-4292 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2072-4292 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Remote Sensing |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2072-4292/15/2/428/pdf?version=1674011379 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Remote Sensing |
| locations[0].landing_page_url | https://doi.org/10.3390/rs15020428 |
| locations[1].id | pmh:oai:doaj.org/article:e70a044f06c14560ae1f6d347758f356 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Remote Sensing, Vol 15, Iss 2, p 428 (2023) |
| locations[1].landing_page_url | https://doaj.org/article/e70a044f06c14560ae1f6d347758f356 |
| locations[2].id | pmh:oai:mdpi.com:/2072-4292/15/2/428/ |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400947 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | MDPI (MDPI AG) |
| locations[2].source.host_organization | https://openalex.org/I4210097602 |
| locations[2].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[2].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Remote Sensing; Volume 15; Issue 2; Pages: 428 |
| locations[2].landing_page_url | https://dx.doi.org/10.3390/rs15020428 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5100386802 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0691-4025 |
| authorships[0].author.display_name | Dongxu Liu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210165038 |
| authorships[0].affiliations[0].raw_affiliation_string | University of Chinese Academy of Sciences, Beijing 100049, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210088164 |
| authorships[0].affiliations[1].raw_affiliation_string | Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China |
| authorships[0].institutions[0].id | https://openalex.org/I4210088164 |
| authorships[0].institutions[0].ror | https://ror.org/012rct222 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I19820366, https://openalex.org/I4210088164 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Changchun Institute of Optics, Fine Mechanics and Physics |
| authorships[0].institutions[1].id | https://openalex.org/I19820366 |
| authorships[0].institutions[1].ror | https://ror.org/034t30j35 |
| authorships[0].institutions[1].type | government |
| authorships[0].institutions[1].lineage | https://openalex.org/I19820366 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Chinese Academy of Sciences |
| authorships[0].institutions[2].id | https://openalex.org/I4210165038 |
| authorships[0].institutions[2].ror | https://ror.org/05qbk4x57 |
| authorships[0].institutions[2].type | education |
| authorships[0].institutions[2].lineage | https://openalex.org/I19820366, https://openalex.org/I4210165038 |
| authorships[0].institutions[2].country_code | CN |
| authorships[0].institutions[2].display_name | University of Chinese Academy of Sciences |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Dongxu Liu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China, University of Chinese Academy of Sciences, Beijing 100049, China |
| authorships[1].author.id | https://openalex.org/A5101439780 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9804-8736 |
| authorships[1].author.display_name | Yirui Wang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210165038 |
| authorships[1].affiliations[0].raw_affiliation_string | University of Chinese Academy of Sciences, Beijing 100049, China |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210088164 |
| authorships[1].affiliations[1].raw_affiliation_string | Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China |
| authorships[1].institutions[0].id | https://openalex.org/I4210088164 |
| authorships[1].institutions[0].ror | https://ror.org/012rct222 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I19820366, https://openalex.org/I4210088164 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Changchun Institute of Optics, Fine Mechanics and Physics |
| authorships[1].institutions[1].id | https://openalex.org/I19820366 |
| authorships[1].institutions[1].ror | https://ror.org/034t30j35 |
| authorships[1].institutions[1].type | government |
| authorships[1].institutions[1].lineage | https://openalex.org/I19820366 |
| authorships[1].institutions[1].country_code | CN |
| authorships[1].institutions[1].display_name | Chinese Academy of Sciences |
| authorships[1].institutions[2].id | https://openalex.org/I4210165038 |
| authorships[1].institutions[2].ror | https://ror.org/05qbk4x57 |
| authorships[1].institutions[2].type | education |
| authorships[1].institutions[2].lineage | https://openalex.org/I19820366, https://openalex.org/I4210165038 |
| authorships[1].institutions[2].country_code | CN |
| authorships[1].institutions[2].display_name | University of Chinese Academy of Sciences |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yirui Wang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China, University of Chinese Academy of Sciences, Beijing 100049, China |
| authorships[2].author.id | https://openalex.org/A5103123580 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5611-7502 |
| authorships[2].author.display_name | Peixun Liu |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210088164 |
| authorships[2].affiliations[0].raw_affiliation_string | Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China |
| authorships[2].institutions[0].id | https://openalex.org/I4210088164 |
| authorships[2].institutions[0].ror | https://ror.org/012rct222 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I19820366, https://openalex.org/I4210088164 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Changchun Institute of Optics, Fine Mechanics and Physics |
| authorships[2].institutions[1].id | https://openalex.org/I19820366 |
| authorships[2].institutions[1].ror | https://ror.org/034t30j35 |
| authorships[2].institutions[1].type | government |
| authorships[2].institutions[1].lineage | https://openalex.org/I19820366 |
| authorships[2].institutions[1].country_code | CN |
| authorships[2].institutions[1].display_name | Chinese Academy of Sciences |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Peixun Liu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China |
| authorships[3].author.id | https://openalex.org/A5100411157 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5130-9049 |
| authorships[3].author.display_name | Qingqing Li |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210128284 |
| authorships[3].affiliations[0].raw_affiliation_string | Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610041, China |
| authorships[3].institutions[0].id | https://openalex.org/I19820366 |
| authorships[3].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[3].institutions[0].type | government |
| authorships[3].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[3].institutions[1].id | https://openalex.org/I4210128284 |
| authorships[3].institutions[1].ror | https://ror.org/02bn68w95 |
| authorships[3].institutions[1].type | facility |
| authorships[3].institutions[1].lineage | https://openalex.org/I19820366, https://openalex.org/I4210128284 |
| authorships[3].institutions[1].country_code | CN |
| authorships[3].institutions[1].display_name | Institute of Optics and Electronics, Chinese Academy of Sciences |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Qingqing Li |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610041, China |
| authorships[4].author.id | https://openalex.org/A5088740924 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-6027-1337 |
| authorships[4].author.display_name | Hang Yang |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210088164 |
| authorships[4].affiliations[0].raw_affiliation_string | Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China |
| authorships[4].institutions[0].id | https://openalex.org/I4210088164 |
| authorships[4].institutions[0].ror | https://ror.org/012rct222 |
| authorships[4].institutions[0].type | facility |
| authorships[4].institutions[0].lineage | https://openalex.org/I19820366, https://openalex.org/I4210088164 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Changchun Institute of Optics, Fine Mechanics and Physics |
| authorships[4].institutions[1].id | https://openalex.org/I19820366 |
| authorships[4].institutions[1].ror | https://ror.org/034t30j35 |
| authorships[4].institutions[1].type | government |
| authorships[4].institutions[1].lineage | https://openalex.org/I19820366 |
| authorships[4].institutions[1].country_code | CN |
| authorships[4].institutions[1].display_name | Chinese Academy of Sciences |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Hang Yang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China |
| authorships[5].author.id | https://openalex.org/A5031287285 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Dianbing Chen |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210088164 |
| authorships[5].affiliations[0].raw_affiliation_string | Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China |
| authorships[5].institutions[0].id | https://openalex.org/I4210088164 |
| authorships[5].institutions[0].ror | https://ror.org/012rct222 |
| authorships[5].institutions[0].type | facility |
| authorships[5].institutions[0].lineage | https://openalex.org/I19820366, https://openalex.org/I4210088164 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Changchun Institute of Optics, Fine Mechanics and Physics |
| authorships[5].institutions[1].id | https://openalex.org/I19820366 |
| authorships[5].institutions[1].ror | https://ror.org/034t30j35 |
| authorships[5].institutions[1].type | government |
| authorships[5].institutions[1].lineage | https://openalex.org/I19820366 |
| authorships[5].institutions[1].country_code | CN |
| authorships[5].institutions[1].display_name | Chinese Academy of Sciences |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Dianbing Chen |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China |
| authorships[6].author.id | https://openalex.org/A5100459809 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-1952-2370 |
| authorships[6].author.display_name | Zhichao Liu |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I4210165038 |
| authorships[6].affiliations[0].raw_affiliation_string | University of Chinese Academy of Sciences, Beijing 100049, China |
| authorships[6].affiliations[1].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210088164 |
| authorships[6].affiliations[1].raw_affiliation_string | Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China |
| authorships[6].institutions[0].id | https://openalex.org/I4210088164 |
| authorships[6].institutions[0].ror | https://ror.org/012rct222 |
| authorships[6].institutions[0].type | facility |
| authorships[6].institutions[0].lineage | https://openalex.org/I19820366, https://openalex.org/I4210088164 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Changchun Institute of Optics, Fine Mechanics and Physics |
| authorships[6].institutions[1].id | https://openalex.org/I19820366 |
| authorships[6].institutions[1].ror | https://ror.org/034t30j35 |
| authorships[6].institutions[1].type | government |
| authorships[6].institutions[1].lineage | https://openalex.org/I19820366 |
| authorships[6].institutions[1].country_code | CN |
| authorships[6].institutions[1].display_name | Chinese Academy of Sciences |
| authorships[6].institutions[2].id | https://openalex.org/I4210165038 |
| authorships[6].institutions[2].ror | https://ror.org/05qbk4x57 |
| authorships[6].institutions[2].type | education |
| authorships[6].institutions[2].lineage | https://openalex.org/I19820366, https://openalex.org/I4210165038 |
| authorships[6].institutions[2].country_code | CN |
| authorships[6].institutions[2].display_name | University of Chinese Academy of Sciences |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Zhichao Liu |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China, University of Chinese Academy of Sciences, Beijing 100049, China |
| authorships[7].author.id | https://openalex.org/A5088872755 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-3757-7447 |
| authorships[7].author.display_name | Guangliang Han |
| authorships[7].countries | CN |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210088164 |
| authorships[7].affiliations[0].raw_affiliation_string | Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China |
| authorships[7].institutions[0].id | https://openalex.org/I4210088164 |
| authorships[7].institutions[0].ror | https://ror.org/012rct222 |
| authorships[7].institutions[0].type | facility |
| authorships[7].institutions[0].lineage | https://openalex.org/I19820366, https://openalex.org/I4210088164 |
| authorships[7].institutions[0].country_code | CN |
| authorships[7].institutions[0].display_name | Changchun Institute of Optics, Fine Mechanics and Physics |
| authorships[7].institutions[1].id | https://openalex.org/I19820366 |
| authorships[7].institutions[1].ror | https://ror.org/034t30j35 |
| authorships[7].institutions[1].type | government |
| authorships[7].institutions[1].lineage | https://openalex.org/I19820366 |
| authorships[7].institutions[1].country_code | CN |
| authorships[7].institutions[1].display_name | Chinese Academy of Sciences |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Guangliang Han |
| authorships[7].is_corresponding | True |
| authorships[7].raw_affiliation_strings | Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2072-4292/15/2/428/pdf?version=1674011379 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Multiscale Cross Interaction Attention Network for Hyperspectral Image Classification |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10689 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2214 |
| primary_topic.subfield.display_name | Media Technology |
| primary_topic.display_name | Remote-Sensing Image Classification |
| related_works | https://openalex.org/W2072166414, https://openalex.org/W2953234277, https://openalex.org/W3209970181, https://openalex.org/W2060875994, https://openalex.org/W3034375524, https://openalex.org/W2962734882, https://openalex.org/W2185726654, https://openalex.org/W1034159276, https://openalex.org/W2899547849, https://openalex.org/W2810679507 |
| cited_by_count | 7 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| locations_count | 3 |
| best_oa_location.id | doi:10.3390/rs15020428 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S43295729 |
| best_oa_location.source.issn | 2072-4292 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2072-4292 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Remote Sensing |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2072-4292/15/2/428/pdf?version=1674011379 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Remote Sensing |
| best_oa_location.landing_page_url | https://doi.org/10.3390/rs15020428 |
| primary_location.id | doi:10.3390/rs15020428 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S43295729 |
| primary_location.source.issn | 2072-4292 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2072-4292 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Remote Sensing |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2072-4292/15/2/428/pdf?version=1674011379 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Remote Sensing |
| primary_location.landing_page_url | https://doi.org/10.3390/rs15020428 |
| publication_date | 2023-01-10 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2949343319, https://openalex.org/W2902788350, https://openalex.org/W2067184918, https://openalex.org/W2108218391, https://openalex.org/W2162698522, https://openalex.org/W2077028485, https://openalex.org/W2082860437, https://openalex.org/W2767340384, https://openalex.org/W2763731268, https://openalex.org/W2782356138, https://openalex.org/W1998030734, https://openalex.org/W2549862511, https://openalex.org/W2144348684, https://openalex.org/W1521436688, https://openalex.org/W2548791488, https://openalex.org/W2985235567, https://openalex.org/W2914331134, https://openalex.org/W2789643644, https://openalex.org/W2804902458, https://openalex.org/W3137622667, https://openalex.org/W3008789903, https://openalex.org/W3186879605, https://openalex.org/W3120389167, https://openalex.org/W3195547108, https://openalex.org/W2792332881, https://openalex.org/W3094484482, https://openalex.org/W3183280703, https://openalex.org/W6806645916, https://openalex.org/W3043181422, https://openalex.org/W6804103250, https://openalex.org/W4206702230, https://openalex.org/W2754507318, https://openalex.org/W6679857237, https://openalex.org/W2144966944, https://openalex.org/W2029316659, https://openalex.org/W4240485910, https://openalex.org/W3011645114, https://openalex.org/W2090424610, https://openalex.org/W6839339696, https://openalex.org/W2946191291, https://openalex.org/W4210753575, https://openalex.org/W6805771015, https://openalex.org/W2614256707, https://openalex.org/W2928260953, https://openalex.org/W2267317359, https://openalex.org/W2997343747, https://openalex.org/W6786145911, https://openalex.org/W1592631677, https://openalex.org/W3021737479, https://openalex.org/W3039213332, https://openalex.org/W3128487205, https://openalex.org/W3200851318, https://openalex.org/W4220676444, https://openalex.org/W6803414691, https://openalex.org/W3217706286, https://openalex.org/W6789529231, https://openalex.org/W2901117552, https://openalex.org/W2977002487, https://openalex.org/W2890732922, https://openalex.org/W3037613841, https://openalex.org/W2950266692, https://openalex.org/W3034552520, https://openalex.org/W2898732869, https://openalex.org/W3203332526, https://openalex.org/W2888493720, https://openalex.org/W2884585870, https://openalex.org/W2194775991, https://openalex.org/W2312906878, https://openalex.org/W3031696400, https://openalex.org/W3044657819, https://openalex.org/W3214384426, https://openalex.org/W4285185907, https://openalex.org/W4206578920, https://openalex.org/W4205102943, https://openalex.org/W2991494819, https://openalex.org/W3103753223, https://openalex.org/W3210685990, https://openalex.org/W3100932715, https://openalex.org/W2132648706, https://openalex.org/W3105553032, https://openalex.org/W3125418472 |
| referenced_works_count | 81 |
| abstract_inverted_index.a | 72, 101 |
| abstract_inverted_index.To | 63 |
| abstract_inverted_index.an | 83 |
| abstract_inverted_index.at | 114 |
| abstract_inverted_index.in | 13, 59 |
| abstract_inverted_index.is | 27, 31, 44, 88, 108 |
| abstract_inverted_index.of | 47, 61, 94, 126, 164 |
| abstract_inverted_index.on | 54, 157 |
| abstract_inverted_index.to | 33, 90, 110, 135, 149 |
| abstract_inverted_index.we | 130 |
| abstract_inverted_index.HSI | 80, 95 |
| abstract_inverted_index.and | 8, 96, 119, 140 |
| abstract_inverted_index.can | 122 |
| abstract_inverted_index.for | 79 |
| abstract_inverted_index.our | 165 |
| abstract_inverted_index.the | 24, 38, 41, 48, 65, 92, 124, 151, 162, 170 |
| abstract_inverted_index.two | 19, 66, 142, 146 |
| abstract_inverted_index.been | 10 |
| abstract_inverted_index.have | 4, 9 |
| abstract_inverted_index.most | 46 |
| abstract_inverted_index.only | 52 |
| abstract_inverted_index.that | 28, 45 |
| abstract_inverted_index.this | 69 |
| abstract_inverted_index.with | 169 |
| abstract_inverted_index.(HSI) | 16 |
| abstract_inverted_index.(IAM) | 87 |
| abstract_inverted_index.Then, | 100 |
| abstract_inverted_index.cross | 74, 103 |
| abstract_inverted_index.first | 25 |
| abstract_inverted_index.focus | 53 |
| abstract_inverted_index.fully | 143 |
| abstract_inverted_index.image | 15 |
| abstract_inverted_index.still | 22 |
| abstract_inverted_index.three | 158 |
| abstract_inverted_index.which | 36, 121 |
| abstract_inverted_index.(CNNs) | 3 |
| abstract_inverted_index.First, | 82 |
| abstract_inverted_index.averse | 32 |
| abstract_inverted_index.detect | 111 |
| abstract_inverted_index.dispel | 97 |
| abstract_inverted_index.exist: | 23 |
| abstract_inverted_index.global | 132 |
| abstract_inverted_index.layers | 148 |
| abstract_inverted_index.method | 167 |
| abstract_inverted_index.module | 86, 106 |
| abstract_inverted_index.neural | 1 |
| abstract_inverted_index.obtain | 150 |
| abstract_inverted_index.output | 152 |
| abstract_inverted_index.second | 42 |
| abstract_inverted_index.(MCFEM) | 107 |
| abstract_inverted_index.Massive | 155 |
| abstract_inverted_index.applied | 12 |
| abstract_inverted_index.article | 70 |
| abstract_inverted_index.average | 133 |
| abstract_inverted_index.broadly | 11 |
| abstract_inverted_index.damages | 37 |
| abstract_inverted_index.dropout | 147 |
| abstract_inverted_index.feature | 34, 56, 104 |
| abstract_inverted_index.issues, | 68 |
| abstract_inverted_index.layers, | 118, 145 |
| abstract_inverted_index.methods | 51 |
| abstract_inverted_index.network | 77 |
| abstract_inverted_index.pooling | 134 |
| abstract_inverted_index.resolve | 64 |
| abstract_inverted_index.scales, | 116 |
| abstract_inverted_index.utilize | 141 |
| abstract_inverted_index.Finally, | 129 |
| abstract_inverted_index.However, | 18 |
| abstract_inverted_index.compared | 168 |
| abstract_inverted_index.compress | 136 |
| abstract_inverted_index.datasets | 160 |
| abstract_inverted_index.designed | 89 |
| abstract_inverted_index.existing | 49 |
| abstract_inverted_index.features | 113, 139 |
| abstract_inverted_index.increase | 123 |
| abstract_inverted_index.methods. | 172 |
| abstract_inverted_index.networks | 2 |
| abstract_inverted_index.problems | 21 |
| abstract_inverted_index.proposes | 71 |
| abstract_inverted_index.results. | 154 |
| abstract_inverted_index.(MCIANet) | 78 |
| abstract_inverted_index.attention | 76, 85 |
| abstract_inverted_index.benchmark | 159 |
| abstract_inverted_index.branches, | 120 |
| abstract_inverted_index.challenge | 26, 43 |
| abstract_inverted_index.different | 115 |
| abstract_inverted_index.diversity | 125 |
| abstract_inverted_index.features. | 128 |
| abstract_inverted_index.highlight | 91 |
| abstract_inverted_index.introduce | 131 |
| abstract_inverted_index.learning, | 35 |
| abstract_inverted_index.preceding | 67 |
| abstract_inverted_index.presented | 166 |
| abstract_inverted_index.redundant | 29, 98 |
| abstract_inverted_index.resulting | 58 |
| abstract_inverted_index.connection | 144 |
| abstract_inverted_index.extraction | 105 |
| abstract_inverted_index.impressive | 6 |
| abstract_inverted_index.multiscale | 73, 102, 137 |
| abstract_inverted_index.challenging | 20 |
| abstract_inverted_index.constructed | 109 |
| abstract_inverted_index.demonstrate | 161 |
| abstract_inverted_index.experiments | 156 |
| abstract_inverted_index.extraction, | 57 |
| abstract_inverted_index.information | 30 |
| abstract_inverted_index.interaction | 75, 84 |
| abstract_inverted_index.performance | 7 |
| abstract_inverted_index.superiority | 163 |
| abstract_inverted_index.demonstrated | 5 |
| abstract_inverted_index.information. | 62, 99 |
| abstract_inverted_index.performance; | 40 |
| abstract_inverted_index.single-scale | 55 |
| abstract_inverted_index.Convolutional | 0 |
| abstract_inverted_index.convolutional | 117 |
| abstract_inverted_index.hyperspectral | 14 |
| abstract_inverted_index.classification | 39, 50, 153 |
| abstract_inverted_index.classification. | 17, 81 |
| abstract_inverted_index.state-of-the-art | 171 |
| abstract_inverted_index.underutilization | 60 |
| abstract_inverted_index.distinguishability | 93 |
| abstract_inverted_index.spectral–spatial | 112, 127, 138 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 96 |
| corresponding_author_ids | https://openalex.org/A5088872755 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 8 |
| corresponding_institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210088164 |
| citation_normalized_percentile.value | 0.81725264 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |