A Multiscale Method for Two-Component, Two-Phase Flow with a Neural Network Surrogate Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2309.00876
Understanding the dynamics of phase boundaries in fluids requires quantitative knowledge about the microscale processes at the interface. We consider the sharp-interface motion of compressible two-component flow, and propose a heterogeneous multiscale method (HMM) to describe the flow fields accurately. The multiscale approach combines a hyperbolic system of balance laws on the continuum scale with molecular-dynamics simulations on the microscale level. Notably, the multiscale approach is necessary to compute the interface dynamics because there is -- at present -- no closed continuum-scale model. The basic HMM relies on a moving-mesh finite-volume method, and has been introduced recently for compressible one-component flow with phase transitions in [Magiera and Rohde, JCP. 469 (2022)]. To overcome the numerical complexity of the molecular-dynamics microscale model a deep neural network is employed as an efficient surrogate model. The entire approach is finally applied to simulate droplet dynamics for argon-methane mixtures in several space-dimensions. Up to our knowledge such compressible two-phase dynamics accounting for microscale phase-change transfer rates have not yet been computed.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2309.00876
- https://arxiv.org/pdf/2309.00876
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4386552513
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4386552513Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2309.00876Digital Object Identifier
- Title
-
A Multiscale Method for Two-Component, Two-Phase Flow with a Neural Network SurrogateWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-09-02Full publication date if available
- Authors
-
Jim Magiera, Christian RohdeList of authors in order
- Landing page
-
https://arxiv.org/abs/2309.00876Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2309.00876Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2309.00876Direct OA link when available
- Concepts
-
Microscale chemistry, Component (thermodynamics), Computer science, Compressibility, Statistical physics, Compressible flow, Flow (mathematics), Artificial neural network, Two-phase flow, Mechanics, Physics, Artificial intelligence, Mathematics, Thermodynamics, Mathematics educationTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4386552513 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2309.00876 |
| ids.doi | https://doi.org/10.48550/arxiv.2309.00876 |
| ids.openalex | https://openalex.org/W4386552513 |
| fwci | |
| type | preprint |
| title | A Multiscale Method for Two-Component, Two-Phase Flow with a Neural Network Surrogate |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11751 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9991000294685364 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2206 |
| topics[0].subfield.display_name | Computational Mechanics |
| topics[0].display_name | Lattice Boltzmann Simulation Studies |
| topics[1].id | https://openalex.org/T12202 |
| topics[1].field.id | https://openalex.org/fields/19 |
| topics[1].field.display_name | Earth and Planetary Sciences |
| topics[1].score | 0.9930999875068665 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1902 |
| topics[1].subfield.display_name | Atmospheric Science |
| topics[1].display_name | nanoparticles nucleation surface interactions |
| topics[2].id | https://openalex.org/T12100 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9707000255584717 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1703 |
| topics[2].subfield.display_name | Computational Theory and Mathematics |
| topics[2].display_name | Advanced Mathematical Modeling in Engineering |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C179428855 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9445387721061707 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1069216 |
| concepts[0].display_name | Microscale chemistry |
| concepts[1].id | https://openalex.org/C168167062 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5329955816268921 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1117970 |
| concepts[1].display_name | Component (thermodynamics) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5322579741477966 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C84655787 |
| concepts[3].level | 2 |
| concepts[3].score | 0.502328634262085 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q8067817 |
| concepts[3].display_name | Compressibility |
| concepts[4].id | https://openalex.org/C121864883 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4911746680736542 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q677916 |
| concepts[4].display_name | Statistical physics |
| concepts[5].id | https://openalex.org/C5192115 |
| concepts[5].level | 3 |
| concepts[5].score | 0.4633845090866089 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2705141 |
| concepts[5].display_name | Compressible flow |
| concepts[6].id | https://openalex.org/C38349280 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4363604784011841 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1434290 |
| concepts[6].display_name | Flow (mathematics) |
| concepts[7].id | https://openalex.org/C50644808 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4284265339374542 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[7].display_name | Artificial neural network |
| concepts[8].id | https://openalex.org/C144308804 |
| concepts[8].level | 3 |
| concepts[8].score | 0.425092875957489 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q232997 |
| concepts[8].display_name | Two-phase flow |
| concepts[9].id | https://openalex.org/C57879066 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3761897683143616 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q41217 |
| concepts[9].display_name | Mechanics |
| concepts[10].id | https://openalex.org/C121332964 |
| concepts[10].level | 0 |
| concepts[10].score | 0.25902771949768066 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[10].display_name | Physics |
| concepts[11].id | https://openalex.org/C154945302 |
| concepts[11].level | 1 |
| concepts[11].score | 0.2361888587474823 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[11].display_name | Artificial intelligence |
| concepts[12].id | https://openalex.org/C33923547 |
| concepts[12].level | 0 |
| concepts[12].score | 0.16789454221725464 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[12].display_name | Mathematics |
| concepts[13].id | https://openalex.org/C97355855 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11473 |
| concepts[13].display_name | Thermodynamics |
| concepts[14].id | https://openalex.org/C145420912 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q853077 |
| concepts[14].display_name | Mathematics education |
| keywords[0].id | https://openalex.org/keywords/microscale-chemistry |
| keywords[0].score | 0.9445387721061707 |
| keywords[0].display_name | Microscale chemistry |
| keywords[1].id | https://openalex.org/keywords/component |
| keywords[1].score | 0.5329955816268921 |
| keywords[1].display_name | Component (thermodynamics) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5322579741477966 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/compressibility |
| keywords[3].score | 0.502328634262085 |
| keywords[3].display_name | Compressibility |
| keywords[4].id | https://openalex.org/keywords/statistical-physics |
| keywords[4].score | 0.4911746680736542 |
| keywords[4].display_name | Statistical physics |
| keywords[5].id | https://openalex.org/keywords/compressible-flow |
| keywords[5].score | 0.4633845090866089 |
| keywords[5].display_name | Compressible flow |
| keywords[6].id | https://openalex.org/keywords/flow |
| keywords[6].score | 0.4363604784011841 |
| keywords[6].display_name | Flow (mathematics) |
| keywords[7].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[7].score | 0.4284265339374542 |
| keywords[7].display_name | Artificial neural network |
| keywords[8].id | https://openalex.org/keywords/two-phase-flow |
| keywords[8].score | 0.425092875957489 |
| keywords[8].display_name | Two-phase flow |
| keywords[9].id | https://openalex.org/keywords/mechanics |
| keywords[9].score | 0.3761897683143616 |
| keywords[9].display_name | Mechanics |
| keywords[10].id | https://openalex.org/keywords/physics |
| keywords[10].score | 0.25902771949768066 |
| keywords[10].display_name | Physics |
| keywords[11].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[11].score | 0.2361888587474823 |
| keywords[11].display_name | Artificial intelligence |
| keywords[12].id | https://openalex.org/keywords/mathematics |
| keywords[12].score | 0.16789454221725464 |
| keywords[12].display_name | Mathematics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2309.00876 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2309.00876 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2309.00876 |
| locations[1].id | doi:10.48550/arxiv.2309.00876 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2309.00876 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5101833556 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9807-0784 |
| authorships[0].author.display_name | Jim Magiera |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Magiera, Jim |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5101833555 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9183-5094 |
| authorships[1].author.display_name | Christian Rohde |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Rohde, Christian |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2309.00876 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-09-09T00:00:00 |
| display_name | A Multiscale Method for Two-Component, Two-Phase Flow with a Neural Network Surrogate |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11751 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9991000294685364 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2206 |
| primary_topic.subfield.display_name | Computational Mechanics |
| primary_topic.display_name | Lattice Boltzmann Simulation Studies |
| related_works | https://openalex.org/W2070976931, https://openalex.org/W2914126368, https://openalex.org/W2039262714, https://openalex.org/W4238997598, https://openalex.org/W4247269991, https://openalex.org/W70032428, https://openalex.org/W120161679, https://openalex.org/W2049521192, https://openalex.org/W2908375145, https://openalex.org/W2188135746 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2309.00876 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2309.00876 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2309.00876 |
| primary_location.id | pmh:oai:arXiv.org:2309.00876 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2309.00876 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2309.00876 |
| publication_date | 2023-09-02 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 29, 44, 88, 121 |
| abstract_inverted_index.-- | 75, 78 |
| abstract_inverted_index.To | 111 |
| abstract_inverted_index.Up | 148 |
| abstract_inverted_index.We | 18 |
| abstract_inverted_index.an | 128 |
| abstract_inverted_index.as | 127 |
| abstract_inverted_index.at | 15, 76 |
| abstract_inverted_index.in | 6, 104, 145 |
| abstract_inverted_index.is | 65, 74, 125, 135 |
| abstract_inverted_index.no | 79 |
| abstract_inverted_index.of | 3, 23, 47, 116 |
| abstract_inverted_index.on | 50, 57, 87 |
| abstract_inverted_index.to | 34, 67, 138, 149 |
| abstract_inverted_index.469 | 109 |
| abstract_inverted_index.HMM | 85 |
| abstract_inverted_index.The | 40, 83, 132 |
| abstract_inverted_index.and | 27, 92, 106 |
| abstract_inverted_index.for | 97, 142, 157 |
| abstract_inverted_index.has | 93 |
| abstract_inverted_index.not | 163 |
| abstract_inverted_index.our | 150 |
| abstract_inverted_index.the | 1, 12, 16, 20, 36, 51, 58, 62, 69, 113, 117 |
| abstract_inverted_index.yet | 164 |
| abstract_inverted_index.JCP. | 108 |
| abstract_inverted_index.been | 94, 165 |
| abstract_inverted_index.deep | 122 |
| abstract_inverted_index.flow | 37, 100 |
| abstract_inverted_index.have | 162 |
| abstract_inverted_index.laws | 49 |
| abstract_inverted_index.such | 152 |
| abstract_inverted_index.with | 54, 101 |
| abstract_inverted_index.(HMM) | 33 |
| abstract_inverted_index.about | 11 |
| abstract_inverted_index.basic | 84 |
| abstract_inverted_index.flow, | 26 |
| abstract_inverted_index.model | 120 |
| abstract_inverted_index.phase | 4, 102 |
| abstract_inverted_index.rates | 161 |
| abstract_inverted_index.scale | 53 |
| abstract_inverted_index.there | 73 |
| abstract_inverted_index.Rohde, | 107 |
| abstract_inverted_index.closed | 80 |
| abstract_inverted_index.entire | 133 |
| abstract_inverted_index.fields | 38 |
| abstract_inverted_index.fluids | 7 |
| abstract_inverted_index.level. | 60 |
| abstract_inverted_index.method | 32 |
| abstract_inverted_index.model. | 82, 131 |
| abstract_inverted_index.motion | 22 |
| abstract_inverted_index.neural | 123 |
| abstract_inverted_index.relies | 86 |
| abstract_inverted_index.system | 46 |
| abstract_inverted_index.applied | 137 |
| abstract_inverted_index.balance | 48 |
| abstract_inverted_index.because | 72 |
| abstract_inverted_index.compute | 68 |
| abstract_inverted_index.droplet | 140 |
| abstract_inverted_index.finally | 136 |
| abstract_inverted_index.method, | 91 |
| abstract_inverted_index.network | 124 |
| abstract_inverted_index.present | 77 |
| abstract_inverted_index.propose | 28 |
| abstract_inverted_index.several | 146 |
| abstract_inverted_index.(2022)]. | 110 |
| abstract_inverted_index.Notably, | 61 |
| abstract_inverted_index.[Magiera | 105 |
| abstract_inverted_index.approach | 42, 64, 134 |
| abstract_inverted_index.combines | 43 |
| abstract_inverted_index.consider | 19 |
| abstract_inverted_index.describe | 35 |
| abstract_inverted_index.dynamics | 2, 71, 141, 155 |
| abstract_inverted_index.employed | 126 |
| abstract_inverted_index.mixtures | 144 |
| abstract_inverted_index.overcome | 112 |
| abstract_inverted_index.recently | 96 |
| abstract_inverted_index.requires | 8 |
| abstract_inverted_index.simulate | 139 |
| abstract_inverted_index.transfer | 160 |
| abstract_inverted_index.computed. | 166 |
| abstract_inverted_index.continuum | 52 |
| abstract_inverted_index.efficient | 129 |
| abstract_inverted_index.interface | 70 |
| abstract_inverted_index.knowledge | 10, 151 |
| abstract_inverted_index.necessary | 66 |
| abstract_inverted_index.numerical | 114 |
| abstract_inverted_index.processes | 14 |
| abstract_inverted_index.surrogate | 130 |
| abstract_inverted_index.two-phase | 154 |
| abstract_inverted_index.accounting | 156 |
| abstract_inverted_index.boundaries | 5 |
| abstract_inverted_index.complexity | 115 |
| abstract_inverted_index.hyperbolic | 45 |
| abstract_inverted_index.interface. | 17 |
| abstract_inverted_index.introduced | 95 |
| abstract_inverted_index.microscale | 13, 59, 119, 158 |
| abstract_inverted_index.multiscale | 31, 41, 63 |
| abstract_inverted_index.accurately. | 39 |
| abstract_inverted_index.moving-mesh | 89 |
| abstract_inverted_index.simulations | 56 |
| abstract_inverted_index.transitions | 103 |
| abstract_inverted_index.compressible | 24, 98, 153 |
| abstract_inverted_index.phase-change | 159 |
| abstract_inverted_index.quantitative | 9 |
| abstract_inverted_index.Understanding | 0 |
| abstract_inverted_index.argon-methane | 143 |
| abstract_inverted_index.finite-volume | 90 |
| abstract_inverted_index.heterogeneous | 30 |
| abstract_inverted_index.one-component | 99 |
| abstract_inverted_index.two-component | 25 |
| abstract_inverted_index.continuum-scale | 81 |
| abstract_inverted_index.sharp-interface | 21 |
| abstract_inverted_index.space-dimensions. | 147 |
| abstract_inverted_index.molecular-dynamics | 55, 118 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |