A multisource data‐driven combined forecasting model based on internet search keyword screening method for interval soybean futures price Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1002/for.3035
Accurate soybean futures price prediction is critical to related agricultural production, warehousing, and trading. Interval forecasting can avoid the loss of fluctuation information and evaluate the uncertainty of futures prices. However, most previous studies only consider the single‐type auxiliary variable, which will cause the deficiency of valued information. Moreover, the research concentrating on internet search index ignores the search habits of investors, resulting in subjectivity in keyword selection. Therefore, a novel multisource data‐driven combined forecasting model is proposed that consists of four parts: unstructured data processing, interval multi‐scale decomposition, interval combination forecasting, and model evaluation. First, sentiment analysis technology is used to convert news text into sentiment scores. The internet search keyword screening method based on latent Dirichlet allocation is then constructed to achieve the quantification of investor attention. Second, a decomposition method is applied to decompose the original interval‐valued series into finite more stationary components. Third, interval prediction results are obtained by machine learning‐based multiple predictors. Finally, the model evaluation module comprising error evaluation indicators and comparison experiments is presented to verify the effectiveness. The experimental results show that the proposed model has higher prediction accuracy, which indicates that multisource data and designed keyword screening methods can enhance the forecasting performance of the model.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1002/for.3035
- https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/for.3035
- OA Status
- bronze
- Cited By
- 15
- References
- 51
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4387220092
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4387220092Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1002/for.3035Digital Object Identifier
- Title
-
A multisource data‐driven combined forecasting model based on internet search keyword screening method for interval soybean futures priceWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-09-29Full publication date if available
- Authors
-
Rui Luo, Jinpei Liu, Piao Wang, Zhifu Tao, Huayou ChenList of authors in order
- Landing page
-
https://doi.org/10.1002/for.3035Publisher landing page
- PDF URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/for.3035Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/for.3035Direct OA link when available
- Concepts
-
Computer science, Interval (graph theory), Futures contract, Data mining, Latent Dirichlet allocation, Probabilistic forecasting, Machine learning, Artificial intelligence, Econometrics, Topic model, Mathematics, Probabilistic logic, Financial economics, Combinatorics, EconomicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
15Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 5, 2024: 10Per-year citation counts (last 5 years)
- References (count)
-
51Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4387220092 |
|---|---|
| doi | https://doi.org/10.1002/for.3035 |
| ids.doi | https://doi.org/10.1002/for.3035 |
| ids.openalex | https://openalex.org/W4387220092 |
| fwci | 4.85233565 |
| type | article |
| title | A multisource data‐driven combined forecasting model based on internet search keyword screening method for interval soybean futures price |
| awards[0].id | https://openalex.org/G4959458362 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 72071001 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| awards[1].id | https://openalex.org/G959259388 |
| awards[1].funder_id | https://openalex.org/F4320321001 |
| awards[1].display_name | |
| awards[1].funder_award_id | 72271002 |
| awards[1].funder_display_name | National Natural Science Foundation of China |
| awards[2].id | https://openalex.org/G7729763780 |
| awards[2].funder_id | https://openalex.org/F4320334897 |
| awards[2].display_name | |
| awards[2].funder_award_id | 21YJCZH148 |
| awards[2].funder_display_name | Natural Science Foundation of Anhui Province |
| awards[3].id | https://openalex.org/G6907920091 |
| awards[3].funder_id | https://openalex.org/F4320334897 |
| awards[3].display_name | |
| awards[3].funder_award_id | 2108085MG239 |
| awards[3].funder_display_name | Natural Science Foundation of Anhui Province |
| awards[4].id | https://openalex.org/G1865616700 |
| awards[4].funder_id | https://openalex.org/F4320334897 |
| awards[4].display_name | |
| awards[4].funder_award_id | 2008085MG226 |
| awards[4].funder_display_name | Natural Science Foundation of Anhui Province |
| awards[5].id | https://openalex.org/G5574970249 |
| awards[5].funder_id | https://openalex.org/F4320321001 |
| awards[5].display_name | |
| awards[5].funder_award_id | 72171002 |
| awards[5].funder_display_name | National Natural Science Foundation of China |
| awards[6].id | https://openalex.org/G8261219453 |
| awards[6].funder_id | https://openalex.org/F4320334897 |
| awards[6].display_name | |
| awards[6].funder_award_id | 1908085J03 |
| awards[6].funder_display_name | Natural Science Foundation of Anhui Province |
| awards[7].id | https://openalex.org/G7218622623 |
| awards[7].funder_id | https://openalex.org/F4320321001 |
| awards[7].display_name | |
| awards[7].funder_award_id | 72001001 |
| awards[7].funder_display_name | National Natural Science Foundation of China |
| awards[8].id | https://openalex.org/G8278584388 |
| awards[8].funder_id | https://openalex.org/F4320321001 |
| awards[8].display_name | |
| awards[8].funder_award_id | 71871001 |
| awards[8].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 2 |
| biblio.volume | 43 |
| biblio.last_page | 390 |
| biblio.first_page | 366 |
| topics[0].id | https://openalex.org/T11326 |
| topics[0].field.id | https://openalex.org/fields/18 |
| topics[0].field.display_name | Decision Sciences |
| topics[0].score | 0.9994000196456909 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1803 |
| topics[0].subfield.display_name | Management Science and Operations Research |
| topics[0].display_name | Stock Market Forecasting Methods |
| topics[1].id | https://openalex.org/T11052 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9968000054359436 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Energy Load and Power Forecasting |
| topics[2].id | https://openalex.org/T11059 |
| topics[2].field.id | https://openalex.org/fields/20 |
| topics[2].field.display_name | Economics, Econometrics and Finance |
| topics[2].score | 0.9943000078201294 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2002 |
| topics[2].subfield.display_name | Economics and Econometrics |
| topics[2].display_name | Market Dynamics and Volatility |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320334897 |
| funders[1].ror | |
| funders[1].display_name | Natural Science Foundation of Anhui Province |
| is_xpac | False |
| apc_list.value | 3090 |
| apc_list.currency | USD |
| apc_list.value_usd | 3090 |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7053465843200684 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2778067643 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6661257147789001 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q166507 |
| concepts[1].display_name | Interval (graph theory) |
| concepts[2].id | https://openalex.org/C106306483 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5385381579399109 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q183984 |
| concepts[2].display_name | Futures contract |
| concepts[3].id | https://openalex.org/C124101348 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5201385617256165 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[3].display_name | Data mining |
| concepts[4].id | https://openalex.org/C500882744 |
| concepts[4].level | 3 |
| concepts[4].score | 0.48264914751052856 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q269236 |
| concepts[4].display_name | Latent Dirichlet allocation |
| concepts[5].id | https://openalex.org/C122282355 |
| concepts[5].level | 3 |
| concepts[5].score | 0.42604896426200867 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7246855 |
| concepts[5].display_name | Probabilistic forecasting |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.42371952533721924 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.38643282651901245 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C149782125 |
| concepts[8].level | 1 |
| concepts[8].score | 0.34861764311790466 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[8].display_name | Econometrics |
| concepts[9].id | https://openalex.org/C171686336 |
| concepts[9].level | 2 |
| concepts[9].score | 0.22137236595153809 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q3532085 |
| concepts[9].display_name | Topic model |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.15696904063224792 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C49937458 |
| concepts[11].level | 2 |
| concepts[11].score | 0.14831236004829407 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2599292 |
| concepts[11].display_name | Probabilistic logic |
| concepts[12].id | https://openalex.org/C106159729 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2294553 |
| concepts[12].display_name | Financial economics |
| concepts[13].id | https://openalex.org/C114614502 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[13].display_name | Combinatorics |
| concepts[14].id | https://openalex.org/C162324750 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[14].display_name | Economics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7053465843200684 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/interval |
| keywords[1].score | 0.6661257147789001 |
| keywords[1].display_name | Interval (graph theory) |
| keywords[2].id | https://openalex.org/keywords/futures-contract |
| keywords[2].score | 0.5385381579399109 |
| keywords[2].display_name | Futures contract |
| keywords[3].id | https://openalex.org/keywords/data-mining |
| keywords[3].score | 0.5201385617256165 |
| keywords[3].display_name | Data mining |
| keywords[4].id | https://openalex.org/keywords/latent-dirichlet-allocation |
| keywords[4].score | 0.48264914751052856 |
| keywords[4].display_name | Latent Dirichlet allocation |
| keywords[5].id | https://openalex.org/keywords/probabilistic-forecasting |
| keywords[5].score | 0.42604896426200867 |
| keywords[5].display_name | Probabilistic forecasting |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.42371952533721924 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.38643282651901245 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/econometrics |
| keywords[8].score | 0.34861764311790466 |
| keywords[8].display_name | Econometrics |
| keywords[9].id | https://openalex.org/keywords/topic-model |
| keywords[9].score | 0.22137236595153809 |
| keywords[9].display_name | Topic model |
| keywords[10].id | https://openalex.org/keywords/mathematics |
| keywords[10].score | 0.15696904063224792 |
| keywords[10].display_name | Mathematics |
| keywords[11].id | https://openalex.org/keywords/probabilistic-logic |
| keywords[11].score | 0.14831236004829407 |
| keywords[11].display_name | Probabilistic logic |
| language | en |
| locations[0].id | doi:10.1002/for.3035 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S122161766 |
| locations[0].source.issn | 0277-6693, 1099-131X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0277-6693 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Forecasting |
| locations[0].source.host_organization | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_name | Wiley |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_lineage_names | Wiley |
| locations[0].license | |
| locations[0].pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/for.3035 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Forecasting |
| locations[0].landing_page_url | https://doi.org/10.1002/for.3035 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5112922940 |
| authorships[0].author.orcid | https://orcid.org/0009-0008-0048-4531 |
| authorships[0].author.display_name | Rui Luo |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I143868143 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Big Data and Statistics, Anhui University, Hefei, China |
| authorships[0].institutions[0].id | https://openalex.org/I143868143 |
| authorships[0].institutions[0].ror | https://ror.org/05th6yx34 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I143868143 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Anhui University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Rui Luo |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Big Data and Statistics, Anhui University, Hefei, China |
| authorships[1].author.id | https://openalex.org/A5005697228 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0658-6247 |
| authorships[1].author.display_name | Jinpei Liu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I143868143 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Business, Anhui University, Hefei, China |
| authorships[1].institutions[0].id | https://openalex.org/I143868143 |
| authorships[1].institutions[0].ror | https://ror.org/05th6yx34 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I143868143 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Anhui University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jinpei Liu |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | School of Business, Anhui University, Hefei, China |
| authorships[2].author.id | https://openalex.org/A5075656279 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3787-6236 |
| authorships[2].author.display_name | Piao Wang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I143868143 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Big Data and Statistics, Anhui University, Hefei, China |
| authorships[2].institutions[0].id | https://openalex.org/I143868143 |
| authorships[2].institutions[0].ror | https://ror.org/05th6yx34 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I143868143 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Anhui University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Piao Wang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Big Data and Statistics, Anhui University, Hefei, China |
| authorships[3].author.id | https://openalex.org/A5101919286 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-4039-9178 |
| authorships[3].author.display_name | Zhifu Tao |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I143868143 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Big Data and Statistics, Anhui University, Hefei, China |
| authorships[3].institutions[0].id | https://openalex.org/I143868143 |
| authorships[3].institutions[0].ror | https://ror.org/05th6yx34 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I143868143 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Anhui University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zhifu Tao |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Big Data and Statistics, Anhui University, Hefei, China |
| authorships[4].author.id | https://openalex.org/A5004641057 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-7312-0367 |
| authorships[4].author.display_name | Huayou Chen |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I143868143 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Mathematics, Anhui University, Hefei, China |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I143868143 |
| authorships[4].affiliations[1].raw_affiliation_string | School of Big Data and Statistics, Anhui University, Hefei, China |
| authorships[4].institutions[0].id | https://openalex.org/I143868143 |
| authorships[4].institutions[0].ror | https://ror.org/05th6yx34 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I143868143 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Anhui University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Huayou Chen |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Big Data and Statistics, Anhui University, Hefei, China, School of Mathematics, Anhui University, Hefei, China |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/for.3035 |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A multisource data‐driven combined forecasting model based on internet search keyword screening method for interval soybean futures price |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11326 |
| primary_topic.field.id | https://openalex.org/fields/18 |
| primary_topic.field.display_name | Decision Sciences |
| primary_topic.score | 0.9994000196456909 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1803 |
| primary_topic.subfield.display_name | Management Science and Operations Research |
| primary_topic.display_name | Stock Market Forecasting Methods |
| related_works | https://openalex.org/W3107650560, https://openalex.org/W3126382579, https://openalex.org/W4317422773, https://openalex.org/W4315588616, https://openalex.org/W2810542905, https://openalex.org/W3123667230, https://openalex.org/W4243064001, https://openalex.org/W2129350855, https://openalex.org/W2888805565, https://openalex.org/W3096554474 |
| cited_by_count | 15 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 5 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 10 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1002/for.3035 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S122161766 |
| best_oa_location.source.issn | 0277-6693, 1099-131X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0277-6693 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of Forecasting |
| best_oa_location.source.host_organization | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_name | Wiley |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_lineage_names | Wiley |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/for.3035 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Forecasting |
| best_oa_location.landing_page_url | https://doi.org/10.1002/for.3035 |
| primary_location.id | doi:10.1002/for.3035 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S122161766 |
| primary_location.source.issn | 0277-6693, 1099-131X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0277-6693 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Forecasting |
| primary_location.source.host_organization | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_name | Wiley |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_lineage_names | Wiley |
| primary_location.license | |
| primary_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/for.3035 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Forecasting |
| primary_location.landing_page_url | https://doi.org/10.1002/for.3035 |
| publication_date | 2023-09-29 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2346811309, https://openalex.org/W4294018282, https://openalex.org/W4213278807, https://openalex.org/W4237791300, https://openalex.org/W2235390017, https://openalex.org/W3179483397, https://openalex.org/W3192325925, https://openalex.org/W3186948388, https://openalex.org/W3110478278, https://openalex.org/W3168821323, https://openalex.org/W2800138630, https://openalex.org/W3204905949, https://openalex.org/W2999700983, https://openalex.org/W2048281837, https://openalex.org/W2079735306, https://openalex.org/W2031769266, https://openalex.org/W2017333734, https://openalex.org/W2031489288, https://openalex.org/W3014616211, https://openalex.org/W3142394151, https://openalex.org/W3135463282, https://openalex.org/W3182383045, https://openalex.org/W3016462384, https://openalex.org/W3216454943, https://openalex.org/W2969983156, https://openalex.org/W2899346540, https://openalex.org/W4200496819, https://openalex.org/W2037093344, https://openalex.org/W3148107757, https://openalex.org/W3033827217, https://openalex.org/W2991122145, https://openalex.org/W2039853520, https://openalex.org/W3169106064, https://openalex.org/W2580110346, https://openalex.org/W3164894090, https://openalex.org/W3001287731, https://openalex.org/W2898307789, https://openalex.org/W2804432385, https://openalex.org/W3040495131, https://openalex.org/W3106174909, https://openalex.org/W3137516072, https://openalex.org/W2522571449, https://openalex.org/W2040388435, https://openalex.org/W3206616300, https://openalex.org/W4311423750, https://openalex.org/W2996644132, https://openalex.org/W3135312874, https://openalex.org/W3158809276, https://openalex.org/W3197352768, https://openalex.org/W3162586076, https://openalex.org/W2483550645 |
| referenced_works_count | 51 |
| abstract_inverted_index.a | 70, 131 |
| abstract_inverted_index.by | 153 |
| abstract_inverted_index.in | 64, 66 |
| abstract_inverted_index.is | 6, 77, 100, 120, 134, 170 |
| abstract_inverted_index.of | 21, 28, 46, 61, 81, 127, 203 |
| abstract_inverted_index.on | 53, 116 |
| abstract_inverted_index.to | 8, 102, 123, 136, 172 |
| abstract_inverted_index.The | 109, 176 |
| abstract_inverted_index.and | 13, 24, 93, 167, 193 |
| abstract_inverted_index.are | 151 |
| abstract_inverted_index.can | 17, 198 |
| abstract_inverted_index.has | 184 |
| abstract_inverted_index.the | 19, 26, 37, 44, 50, 58, 125, 138, 159, 174, 181, 200, 204 |
| abstract_inverted_index.data | 85, 192 |
| abstract_inverted_index.four | 82 |
| abstract_inverted_index.into | 106, 142 |
| abstract_inverted_index.loss | 20 |
| abstract_inverted_index.more | 144 |
| abstract_inverted_index.most | 32 |
| abstract_inverted_index.news | 104 |
| abstract_inverted_index.only | 35 |
| abstract_inverted_index.show | 179 |
| abstract_inverted_index.text | 105 |
| abstract_inverted_index.that | 79, 180, 190 |
| abstract_inverted_index.then | 121 |
| abstract_inverted_index.used | 101 |
| abstract_inverted_index.will | 42 |
| abstract_inverted_index.avoid | 18 |
| abstract_inverted_index.based | 115 |
| abstract_inverted_index.cause | 43 |
| abstract_inverted_index.error | 164 |
| abstract_inverted_index.index | 56 |
| abstract_inverted_index.model | 76, 94, 160, 183 |
| abstract_inverted_index.novel | 71 |
| abstract_inverted_index.price | 4 |
| abstract_inverted_index.which | 41, 188 |
| abstract_inverted_index.First, | 96 |
| abstract_inverted_index.Third, | 147 |
| abstract_inverted_index.finite | 143 |
| abstract_inverted_index.habits | 60 |
| abstract_inverted_index.higher | 185 |
| abstract_inverted_index.latent | 117 |
| abstract_inverted_index.method | 114, 133 |
| abstract_inverted_index.model. | 205 |
| abstract_inverted_index.module | 162 |
| abstract_inverted_index.parts: | 83 |
| abstract_inverted_index.search | 55, 59, 111 |
| abstract_inverted_index.series | 141 |
| abstract_inverted_index.valued | 47 |
| abstract_inverted_index.verify | 173 |
| abstract_inverted_index.Second, | 130 |
| abstract_inverted_index.achieve | 124 |
| abstract_inverted_index.applied | 135 |
| abstract_inverted_index.convert | 103 |
| abstract_inverted_index.enhance | 199 |
| abstract_inverted_index.futures | 3, 29 |
| abstract_inverted_index.ignores | 57 |
| abstract_inverted_index.keyword | 67, 112, 195 |
| abstract_inverted_index.machine | 154 |
| abstract_inverted_index.methods | 197 |
| abstract_inverted_index.prices. | 30 |
| abstract_inverted_index.related | 9 |
| abstract_inverted_index.results | 150, 178 |
| abstract_inverted_index.scores. | 108 |
| abstract_inverted_index.soybean | 2 |
| abstract_inverted_index.studies | 34 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Accurate | 1 |
| abstract_inverted_index.Finally, | 158 |
| abstract_inverted_index.However, | 31 |
| abstract_inverted_index.Interval | 15 |
| abstract_inverted_index.analysis | 98 |
| abstract_inverted_index.combined | 74 |
| abstract_inverted_index.consider | 36 |
| abstract_inverted_index.consists | 80 |
| abstract_inverted_index.critical | 7 |
| abstract_inverted_index.designed | 194 |
| abstract_inverted_index.evaluate | 25 |
| abstract_inverted_index.internet | 54, 110 |
| abstract_inverted_index.interval | 87, 90, 148 |
| abstract_inverted_index.investor | 128 |
| abstract_inverted_index.multiple | 156 |
| abstract_inverted_index.obtained | 152 |
| abstract_inverted_index.original | 139 |
| abstract_inverted_index.previous | 33 |
| abstract_inverted_index.proposed | 78, 182 |
| abstract_inverted_index.research | 51 |
| abstract_inverted_index.trading. | 14 |
| abstract_inverted_index.Dirichlet | 118 |
| abstract_inverted_index.Moreover, | 49 |
| abstract_inverted_index.accuracy, | 187 |
| abstract_inverted_index.auxiliary | 39 |
| abstract_inverted_index.decompose | 137 |
| abstract_inverted_index.indicates | 189 |
| abstract_inverted_index.presented | 171 |
| abstract_inverted_index.resulting | 63 |
| abstract_inverted_index.screening | 113, 196 |
| abstract_inverted_index.sentiment | 97, 107 |
| abstract_inverted_index.variable, | 40 |
| abstract_inverted_index.Therefore, | 69 |
| abstract_inverted_index.allocation | 119 |
| abstract_inverted_index.attention. | 129 |
| abstract_inverted_index.comparison | 168 |
| abstract_inverted_index.comprising | 163 |
| abstract_inverted_index.deficiency | 45 |
| abstract_inverted_index.evaluation | 161, 165 |
| abstract_inverted_index.indicators | 166 |
| abstract_inverted_index.investors, | 62 |
| abstract_inverted_index.prediction | 5, 149, 186 |
| abstract_inverted_index.selection. | 68 |
| abstract_inverted_index.stationary | 145 |
| abstract_inverted_index.technology | 99 |
| abstract_inverted_index.combination | 91 |
| abstract_inverted_index.components. | 146 |
| abstract_inverted_index.constructed | 122 |
| abstract_inverted_index.evaluation. | 95 |
| abstract_inverted_index.experiments | 169 |
| abstract_inverted_index.fluctuation | 22 |
| abstract_inverted_index.forecasting | 16, 75, 201 |
| abstract_inverted_index.information | 23 |
| abstract_inverted_index.multisource | 72, 191 |
| abstract_inverted_index.performance | 202 |
| abstract_inverted_index.predictors. | 157 |
| abstract_inverted_index.processing, | 86 |
| abstract_inverted_index.production, | 11 |
| abstract_inverted_index.uncertainty | 27 |
| abstract_inverted_index.agricultural | 10 |
| abstract_inverted_index.experimental | 177 |
| abstract_inverted_index.forecasting, | 92 |
| abstract_inverted_index.information. | 48 |
| abstract_inverted_index.subjectivity | 65 |
| abstract_inverted_index.unstructured | 84 |
| abstract_inverted_index.warehousing, | 12 |
| abstract_inverted_index.concentrating | 52 |
| abstract_inverted_index.data‐driven | 73 |
| abstract_inverted_index.decomposition | 132 |
| abstract_inverted_index.multi‐scale | 88 |
| abstract_inverted_index.single‐type | 38 |
| abstract_inverted_index.decomposition, | 89 |
| abstract_inverted_index.effectiveness. | 175 |
| abstract_inverted_index.quantification | 126 |
| abstract_inverted_index.learning‐based | 155 |
| abstract_inverted_index.interval‐valued | 140 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 98 |
| corresponding_author_ids | https://openalex.org/A5005697228 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I143868143 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/2 |
| sustainable_development_goals[0].score | 0.6800000071525574 |
| sustainable_development_goals[0].display_name | Zero hunger |
| citation_normalized_percentile.value | 0.94577001 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |