A multistate first-order Markov model for modeling time distribution of extreme rainfall events Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.1007/s00477-020-01939-1
The time distribution of extreme rainfall events is a significant property that governs the design of urban stormwater management structures. Accuracy in characterizing this behavior can significantly influence the design of hydraulic structures. Current methods used for this purpose either tend to be generic and hence sacrifice on accuracy or need a lot of model parameters and input data. In this study, a computationally efficient multistate first-order Markov model is proposed for use in characterizing the inherently stochastic nature of the dimensionless time distribution of extreme rainfall. The model was applied to bivariate extremes at 10 stations in India and 205 stations in the United States (US). A comprehensive performance evaluation was carried out with one-hundred stochastically generated extremes for each historically observed extreme rainfall event. The comparisons included: 1-h (15-min); 2-h (30-min); and, 3-h (45-min) peak rainfall intensities for India and (US) stations, respectively; number of first, second, third, and fourth-quartile storms; the dependence of peak rainfall intensity on total depth and duration; and, return levels and return periods of peak discharge when these extremes were applied on a hypothetical urban catchment. Results show that the model efficiently characterizes the time distribution of extremes with: Nash–Sutcliffe-Efficiency > 0.85 for peak rainfall intensity and peak discharge; < 20% error in reproducing different quartile storms; and, < 0.15 error in correlation analysis at all study locations. Hence the model can be used to effectively reproduce the time distribution of extreme rainfall events, thus increasing the confidence of design of urban stormwater management structures.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1007/s00477-020-01939-1
- https://link.springer.com/content/pdf/10.1007/s00477-020-01939-1.pdf
- OA Status
- hybrid
- Cited By
- 8
- References
- 57
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3108675514
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3108675514Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1007/s00477-020-01939-1Digital Object Identifier
- Title
-
A multistate first-order Markov model for modeling time distribution of extreme rainfall eventsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-12-02Full publication date if available
- Authors
-
A. N. Rohith, Margaret W. Gitau, Indrajeet Chaubey, K. P. SudheerList of authors in order
- Landing page
-
https://doi.org/10.1007/s00477-020-01939-1Publisher landing page
- PDF URL
-
https://link.springer.com/content/pdf/10.1007/s00477-020-01939-1.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://link.springer.com/content/pdf/10.1007/s00477-020-01939-1.pdfDirect OA link when available
- Concepts
-
Environmental science, Hydrograph, Return period, Statistics, Extreme value theory, Quartile, Storm, Meteorology, Generalized Pareto distribution, Mathematics, Climatology, Drainage basin, Flood myth, Geology, Geography, Confidence interval, Archaeology, CartographyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
8Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 1, 2023: 2, 2022: 2Per-year citation counts (last 5 years)
- References (count)
-
57Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3108675514 |
|---|---|
| doi | https://doi.org/10.1007/s00477-020-01939-1 |
| ids.doi | https://doi.org/10.1007/s00477-020-01939-1 |
| ids.mag | 3108675514 |
| ids.openalex | https://openalex.org/W3108675514 |
| fwci | 0.39666899 |
| type | article |
| title | A multistate first-order Markov model for modeling time distribution of extreme rainfall events |
| awards[0].id | https://openalex.org/G782091248 |
| awards[0].funder_id | https://openalex.org/F4320332299 |
| awards[0].display_name | |
| awards[0].funder_award_id | Hatch Project IND00000752 |
| awards[0].funder_display_name | National Institute of Food and Agriculture |
| biblio.issue | 6 |
| biblio.volume | 35 |
| biblio.last_page | 1221 |
| biblio.first_page | 1205 |
| topics[0].id | https://openalex.org/T11186 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9994000196456909 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2306 |
| topics[0].subfield.display_name | Global and Planetary Change |
| topics[0].display_name | Hydrology and Drought Analysis |
| topics[1].id | https://openalex.org/T10930 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9984999895095825 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2306 |
| topics[1].subfield.display_name | Global and Planetary Change |
| topics[1].display_name | Flood Risk Assessment and Management |
| topics[2].id | https://openalex.org/T11483 |
| topics[2].field.id | https://openalex.org/fields/19 |
| topics[2].field.display_name | Earth and Planetary Sciences |
| topics[2].score | 0.9955999851226807 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1902 |
| topics[2].subfield.display_name | Atmospheric Science |
| topics[2].display_name | Tropical and Extratropical Cyclones Research |
| funders[0].id | https://openalex.org/F4320332299 |
| funders[0].ror | https://ror.org/05qx3fv49 |
| funders[0].display_name | National Institute of Food and Agriculture |
| is_xpac | False |
| apc_list.value | 2790 |
| apc_list.currency | EUR |
| apc_list.value_usd | 3590 |
| apc_paid.value | 2790 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 3590 |
| concepts[0].id | https://openalex.org/C39432304 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6011573672294617 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[0].display_name | Environmental science |
| concepts[1].id | https://openalex.org/C154936535 |
| concepts[1].level | 3 |
| concepts[1].score | 0.5614738464355469 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q320062 |
| concepts[1].display_name | Hydrograph |
| concepts[2].id | https://openalex.org/C75007070 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5031079649925232 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2627230 |
| concepts[2].display_name | Return period |
| concepts[3].id | https://openalex.org/C105795698 |
| concepts[3].level | 1 |
| concepts[3].score | 0.48486050963401794 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[3].display_name | Statistics |
| concepts[4].id | https://openalex.org/C147581598 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4787294566631317 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q729429 |
| concepts[4].display_name | Extreme value theory |
| concepts[5].id | https://openalex.org/C68443243 |
| concepts[5].level | 3 |
| concepts[5].score | 0.4671916961669922 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2786686 |
| concepts[5].display_name | Quartile |
| concepts[6].id | https://openalex.org/C105306849 |
| concepts[6].level | 2 |
| concepts[6].score | 0.46664029359817505 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q81054 |
| concepts[6].display_name | Storm |
| concepts[7].id | https://openalex.org/C153294291 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4168210029602051 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[7].display_name | Meteorology |
| concepts[8].id | https://openalex.org/C133514767 |
| concepts[8].level | 3 |
| concepts[8].score | 0.41536498069763184 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q5532448 |
| concepts[8].display_name | Generalized Pareto distribution |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.39126601815223694 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C49204034 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3274349570274353 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q52139 |
| concepts[10].display_name | Climatology |
| concepts[11].id | https://openalex.org/C126645576 |
| concepts[11].level | 2 |
| concepts[11].score | 0.2725139856338501 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q166620 |
| concepts[11].display_name | Drainage basin |
| concepts[12].id | https://openalex.org/C74256435 |
| concepts[12].level | 2 |
| concepts[12].score | 0.22709918022155762 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q134052 |
| concepts[12].display_name | Flood myth |
| concepts[13].id | https://openalex.org/C127313418 |
| concepts[13].level | 0 |
| concepts[13].score | 0.12654513120651245 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[13].display_name | Geology |
| concepts[14].id | https://openalex.org/C205649164 |
| concepts[14].level | 0 |
| concepts[14].score | 0.10930448770523071 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[14].display_name | Geography |
| concepts[15].id | https://openalex.org/C44249647 |
| concepts[15].level | 2 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q208498 |
| concepts[15].display_name | Confidence interval |
| concepts[16].id | https://openalex.org/C166957645 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[16].display_name | Archaeology |
| concepts[17].id | https://openalex.org/C58640448 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q42515 |
| concepts[17].display_name | Cartography |
| keywords[0].id | https://openalex.org/keywords/environmental-science |
| keywords[0].score | 0.6011573672294617 |
| keywords[0].display_name | Environmental science |
| keywords[1].id | https://openalex.org/keywords/hydrograph |
| keywords[1].score | 0.5614738464355469 |
| keywords[1].display_name | Hydrograph |
| keywords[2].id | https://openalex.org/keywords/return-period |
| keywords[2].score | 0.5031079649925232 |
| keywords[2].display_name | Return period |
| keywords[3].id | https://openalex.org/keywords/statistics |
| keywords[3].score | 0.48486050963401794 |
| keywords[3].display_name | Statistics |
| keywords[4].id | https://openalex.org/keywords/extreme-value-theory |
| keywords[4].score | 0.4787294566631317 |
| keywords[4].display_name | Extreme value theory |
| keywords[5].id | https://openalex.org/keywords/quartile |
| keywords[5].score | 0.4671916961669922 |
| keywords[5].display_name | Quartile |
| keywords[6].id | https://openalex.org/keywords/storm |
| keywords[6].score | 0.46664029359817505 |
| keywords[6].display_name | Storm |
| keywords[7].id | https://openalex.org/keywords/meteorology |
| keywords[7].score | 0.4168210029602051 |
| keywords[7].display_name | Meteorology |
| keywords[8].id | https://openalex.org/keywords/generalized-pareto-distribution |
| keywords[8].score | 0.41536498069763184 |
| keywords[8].display_name | Generalized Pareto distribution |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.39126601815223694 |
| keywords[9].display_name | Mathematics |
| keywords[10].id | https://openalex.org/keywords/climatology |
| keywords[10].score | 0.3274349570274353 |
| keywords[10].display_name | Climatology |
| keywords[11].id | https://openalex.org/keywords/drainage-basin |
| keywords[11].score | 0.2725139856338501 |
| keywords[11].display_name | Drainage basin |
| keywords[12].id | https://openalex.org/keywords/flood-myth |
| keywords[12].score | 0.22709918022155762 |
| keywords[12].display_name | Flood myth |
| keywords[13].id | https://openalex.org/keywords/geology |
| keywords[13].score | 0.12654513120651245 |
| keywords[13].display_name | Geology |
| keywords[14].id | https://openalex.org/keywords/geography |
| keywords[14].score | 0.10930448770523071 |
| keywords[14].display_name | Geography |
| language | en |
| locations[0].id | doi:10.1007/s00477-020-01939-1 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S81024170 |
| locations[0].source.issn | 1436-3240, 1436-3259 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1436-3240 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Stochastic Environmental Research and Risk Assessment |
| locations[0].source.host_organization | https://openalex.org/P4310319900 |
| locations[0].source.host_organization_name | Springer Science+Business Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://link.springer.com/content/pdf/10.1007/s00477-020-01939-1.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Stochastic Environmental Research and Risk Assessment |
| locations[0].landing_page_url | https://doi.org/10.1007/s00477-020-01939-1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5072378723 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6522-7861 |
| authorships[0].author.display_name | A. N. Rohith |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I24676775 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India |
| authorships[0].institutions[0].id | https://openalex.org/I24676775 |
| authorships[0].institutions[0].ror | https://ror.org/03v0r5n49 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I24676775 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Indian Institute of Technology Madras |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | A. N. Rohith |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India |
| authorships[1].author.id | https://openalex.org/A5036425701 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4931-7047 |
| authorships[1].author.display_name | Margaret W. Gitau |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I219193219 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana, USA |
| authorships[1].institutions[0].id | https://openalex.org/I219193219 |
| authorships[1].institutions[0].ror | https://ror.org/02dqehb95 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I219193219 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Purdue University West Lafayette |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Margaret W. Gitau |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana, USA |
| authorships[2].author.id | https://openalex.org/A5070566894 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8217-1089 |
| authorships[2].author.display_name | Indrajeet Chaubey |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I140172145 |
| authorships[2].affiliations[0].raw_affiliation_string | College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, Connecticut, USA |
| authorships[2].institutions[0].id | https://openalex.org/I140172145 |
| authorships[2].institutions[0].ror | https://ror.org/02der9h97 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I140172145 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | University of Connecticut |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | I. Chaubey |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, Connecticut, USA |
| authorships[3].author.id | https://openalex.org/A5111846215 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | K. P. Sudheer |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I219193219 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana, USA |
| authorships[3].institutions[0].id | https://openalex.org/I219193219 |
| authorships[3].institutions[0].ror | https://ror.org/02dqehb95 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I219193219 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Purdue University West Lafayette |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | K. P. Sudheer |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana, USA |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://link.springer.com/content/pdf/10.1007/s00477-020-01939-1.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A multistate first-order Markov model for modeling time distribution of extreme rainfall events |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11186 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9994000196456909 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2306 |
| primary_topic.subfield.display_name | Global and Planetary Change |
| primary_topic.display_name | Hydrology and Drought Analysis |
| related_works | https://openalex.org/W2079348161, https://openalex.org/W2621623949, https://openalex.org/W3104492748, https://openalex.org/W2948998474, https://openalex.org/W2047947128, https://openalex.org/W2587066997, https://openalex.org/W2590280148, https://openalex.org/W2551444002, https://openalex.org/W3038575280, https://openalex.org/W2775024348 |
| cited_by_count | 8 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 2 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1007/s00477-020-01939-1 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S81024170 |
| best_oa_location.source.issn | 1436-3240, 1436-3259 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1436-3240 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Stochastic Environmental Research and Risk Assessment |
| best_oa_location.source.host_organization | https://openalex.org/P4310319900 |
| best_oa_location.source.host_organization_name | Springer Science+Business Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s00477-020-01939-1.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Stochastic Environmental Research and Risk Assessment |
| best_oa_location.landing_page_url | https://doi.org/10.1007/s00477-020-01939-1 |
| primary_location.id | doi:10.1007/s00477-020-01939-1 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S81024170 |
| primary_location.source.issn | 1436-3240, 1436-3259 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1436-3240 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Stochastic Environmental Research and Risk Assessment |
| primary_location.source.host_organization | https://openalex.org/P4310319900 |
| primary_location.source.host_organization_name | Springer Science+Business Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s00477-020-01939-1.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Stochastic Environmental Research and Risk Assessment |
| primary_location.landing_page_url | https://doi.org/10.1007/s00477-020-01939-1 |
| publication_date | 2020-12-02 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2004040611, https://openalex.org/W2016700240, https://openalex.org/W2990510618, https://openalex.org/W2586200086, https://openalex.org/W2898962279, https://openalex.org/W2773460561, https://openalex.org/W2297875801, https://openalex.org/W1991211238, https://openalex.org/W2029798084, https://openalex.org/W1500657154, https://openalex.org/W2101907863, https://openalex.org/W2753366344, https://openalex.org/W2037981577, https://openalex.org/W2096045964, https://openalex.org/W1978917106, https://openalex.org/W2305350542, https://openalex.org/W2766322990, https://openalex.org/W1988834239, https://openalex.org/W2039182842, https://openalex.org/W2236510366, https://openalex.org/W2179118312, https://openalex.org/W2012912804, https://openalex.org/W1994885201, https://openalex.org/W2746268521, https://openalex.org/W2767537342, https://openalex.org/W1529896556, https://openalex.org/W1651792978, https://openalex.org/W2077217759, https://openalex.org/W2473711165, https://openalex.org/W1970935069, https://openalex.org/W2090635390, https://openalex.org/W2791503160, https://openalex.org/W1543045257, https://openalex.org/W1994055968, https://openalex.org/W2071294880, https://openalex.org/W2323839239, https://openalex.org/W1990312647, https://openalex.org/W2030622724, https://openalex.org/W2036362371, https://openalex.org/W1995617950, https://openalex.org/W2079333054, https://openalex.org/W2103042981, https://openalex.org/W3011788415, https://openalex.org/W2002596522, https://openalex.org/W2053430790, https://openalex.org/W2032112606, https://openalex.org/W2170590343, https://openalex.org/W2792818250, https://openalex.org/W2075648616, https://openalex.org/W4236296133, https://openalex.org/W1764496171, https://openalex.org/W2119436275, https://openalex.org/W4229640350, https://openalex.org/W2790835752, https://openalex.org/W4376453859, https://openalex.org/W2150009788, https://openalex.org/W1929961595 |
| referenced_works_count | 57 |
| abstract_inverted_index.A | 108 |
| abstract_inverted_index.a | 9, 52, 63, 180 |
| abstract_inverted_index.10 | 96 |
| abstract_inverted_index.In | 60 |
| abstract_inverted_index.at | 95, 222 |
| abstract_inverted_index.be | 43, 230 |
| abstract_inverted_index.in | 22, 74, 98, 103, 210, 219 |
| abstract_inverted_index.is | 8, 70 |
| abstract_inverted_index.of | 4, 16, 31, 54, 80, 85, 147, 156, 171, 194, 238, 246, 248 |
| abstract_inverted_index.on | 48, 160, 179 |
| abstract_inverted_index.or | 50 |
| abstract_inverted_index.to | 42, 92, 232 |
| abstract_inverted_index.1-h | 130 |
| abstract_inverted_index.2-h | 132 |
| abstract_inverted_index.20% | 208 |
| abstract_inverted_index.205 | 101 |
| abstract_inverted_index.3-h | 135 |
| abstract_inverted_index.The | 1, 88, 127 |
| abstract_inverted_index.all | 223 |
| abstract_inverted_index.and | 45, 57, 100, 142, 151, 163, 168, 204 |
| abstract_inverted_index.can | 26, 229 |
| abstract_inverted_index.for | 37, 72, 120, 140, 200 |
| abstract_inverted_index.lot | 53 |
| abstract_inverted_index.out | 114 |
| abstract_inverted_index.the | 14, 29, 76, 81, 104, 154, 187, 191, 227, 235, 244 |
| abstract_inverted_index.use | 73 |
| abstract_inverted_index.was | 90, 112 |
| abstract_inverted_index.> | 198 |
| abstract_inverted_index.< | 207, 216 |
| abstract_inverted_index.(US) | 143 |
| abstract_inverted_index.0.15 | 217 |
| abstract_inverted_index.0.85 | 199 |
| abstract_inverted_index.and, | 134, 165, 215 |
| abstract_inverted_index.each | 121 |
| abstract_inverted_index.need | 51 |
| abstract_inverted_index.peak | 137, 157, 172, 201, 205 |
| abstract_inverted_index.show | 185 |
| abstract_inverted_index.tend | 41 |
| abstract_inverted_index.that | 12, 186 |
| abstract_inverted_index.this | 24, 38, 61 |
| abstract_inverted_index.thus | 242 |
| abstract_inverted_index.time | 2, 83, 192, 236 |
| abstract_inverted_index.used | 36, 231 |
| abstract_inverted_index.were | 177 |
| abstract_inverted_index.when | 174 |
| abstract_inverted_index.with | 115 |
| abstract_inverted_index.(US). | 107 |
| abstract_inverted_index.Hence | 226 |
| abstract_inverted_index.India | 99, 141 |
| abstract_inverted_index.data. | 59 |
| abstract_inverted_index.depth | 162 |
| abstract_inverted_index.error | 209, 218 |
| abstract_inverted_index.hence | 46 |
| abstract_inverted_index.input | 58 |
| abstract_inverted_index.model | 55, 69, 89, 188, 228 |
| abstract_inverted_index.study | 224 |
| abstract_inverted_index.these | 175 |
| abstract_inverted_index.total | 161 |
| abstract_inverted_index.urban | 17, 182, 249 |
| abstract_inverted_index.with: | 196 |
| abstract_inverted_index.Markov | 68 |
| abstract_inverted_index.States | 106 |
| abstract_inverted_index.United | 105 |
| abstract_inverted_index.design | 15, 30, 247 |
| abstract_inverted_index.either | 40 |
| abstract_inverted_index.event. | 126 |
| abstract_inverted_index.events | 7 |
| abstract_inverted_index.first, | 148 |
| abstract_inverted_index.levels | 167 |
| abstract_inverted_index.nature | 79 |
| abstract_inverted_index.number | 146 |
| abstract_inverted_index.return | 166, 169 |
| abstract_inverted_index.study, | 62 |
| abstract_inverted_index.third, | 150 |
| abstract_inverted_index.Current | 34 |
| abstract_inverted_index.Results | 184 |
| abstract_inverted_index.applied | 91, 178 |
| abstract_inverted_index.carried | 113 |
| abstract_inverted_index.events, | 241 |
| abstract_inverted_index.extreme | 5, 86, 124, 239 |
| abstract_inverted_index.generic | 44 |
| abstract_inverted_index.governs | 13 |
| abstract_inverted_index.methods | 35 |
| abstract_inverted_index.periods | 170 |
| abstract_inverted_index.purpose | 39 |
| abstract_inverted_index.second, | 149 |
| abstract_inverted_index.storms; | 153, 214 |
| abstract_inverted_index.(45-min) | 136 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Accuracy | 21 |
| abstract_inverted_index.accuracy | 49 |
| abstract_inverted_index.analysis | 221 |
| abstract_inverted_index.behavior | 25 |
| abstract_inverted_index.extremes | 94, 119, 176, 195 |
| abstract_inverted_index.observed | 123 |
| abstract_inverted_index.property | 11 |
| abstract_inverted_index.proposed | 71 |
| abstract_inverted_index.quartile | 213 |
| abstract_inverted_index.rainfall | 6, 125, 138, 158, 202, 240 |
| abstract_inverted_index.stations | 97, 102 |
| abstract_inverted_index.(15-min); | 131 |
| abstract_inverted_index.(30-min); | 133 |
| abstract_inverted_index.bivariate | 93 |
| abstract_inverted_index.different | 212 |
| abstract_inverted_index.discharge | 173 |
| abstract_inverted_index.duration; | 164 |
| abstract_inverted_index.efficient | 65 |
| abstract_inverted_index.generated | 118 |
| abstract_inverted_index.hydraulic | 32 |
| abstract_inverted_index.included: | 129 |
| abstract_inverted_index.influence | 28 |
| abstract_inverted_index.intensity | 159, 203 |
| abstract_inverted_index.rainfall. | 87 |
| abstract_inverted_index.reproduce | 234 |
| abstract_inverted_index.sacrifice | 47 |
| abstract_inverted_index.stations, | 144 |
| abstract_inverted_index.catchment. | 183 |
| abstract_inverted_index.confidence | 245 |
| abstract_inverted_index.dependence | 155 |
| abstract_inverted_index.discharge; | 206 |
| abstract_inverted_index.evaluation | 111 |
| abstract_inverted_index.increasing | 243 |
| abstract_inverted_index.inherently | 77 |
| abstract_inverted_index.locations. | 225 |
| abstract_inverted_index.management | 19, 251 |
| abstract_inverted_index.multistate | 66 |
| abstract_inverted_index.parameters | 56 |
| abstract_inverted_index.stochastic | 78 |
| abstract_inverted_index.stormwater | 18, 250 |
| abstract_inverted_index.comparisons | 128 |
| abstract_inverted_index.correlation | 220 |
| abstract_inverted_index.effectively | 233 |
| abstract_inverted_index.efficiently | 189 |
| abstract_inverted_index.first-order | 67 |
| abstract_inverted_index.intensities | 139 |
| abstract_inverted_index.one-hundred | 116 |
| abstract_inverted_index.performance | 110 |
| abstract_inverted_index.reproducing | 211 |
| abstract_inverted_index.significant | 10 |
| abstract_inverted_index.structures. | 20, 33, 252 |
| abstract_inverted_index.distribution | 3, 84, 193, 237 |
| abstract_inverted_index.historically | 122 |
| abstract_inverted_index.hypothetical | 181 |
| abstract_inverted_index.characterizes | 190 |
| abstract_inverted_index.comprehensive | 109 |
| abstract_inverted_index.dimensionless | 82 |
| abstract_inverted_index.respectively; | 145 |
| abstract_inverted_index.significantly | 27 |
| abstract_inverted_index.characterizing | 23, 75 |
| abstract_inverted_index.stochastically | 117 |
| abstract_inverted_index.computationally | 64 |
| abstract_inverted_index.fourth-quartile | 152 |
| abstract_inverted_index.Nash–Sutcliffe-Efficiency | 197 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.6399999856948853 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.65323411 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |