A multiyear hierarchical Bayesian mark-recapture model incorporating data on recurring salmonid behavior to account for sparse or missing data: Supplementary Figure 10 Article Swipe
Bryce N. Oldemeyer
,
Timothy Copeland
,
Brian P. Kennedy
·
YOU?
·
· 2018
· Open Access
·
· DOI: https://doi.org/10.7755/fb.116.3.4s6
YOU?
·
· 2018
· Open Access
·
· DOI: https://doi.org/10.7755/fb.116.3.4s6
Boxplot of raw weekly abundance (u) juvenile Chinook salmon (Oncorhynchus tshawytscha) and raw weekly trap efficiency, measured as the number of marked individuals in the population divided by the number of marked individuals counted or captured at a sampling event (m/n), for a rotary screw trap deployed on Big Creek, Idaho, during 2007-2014.The middle line within the box represents the median, the upper and lower edges of the box represent the first and third quartiles (the 25th and 75th percentiles), the lines extending beyond the box correspond to the largest or smallest values or 1.5 times the interquartile range, and dots represent outliers (values outside of 1.5 times the interquartile range).
Related Topics
Concepts
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.7755/fb.116.3.4s6
- https://doi.org/10.7755/fb.116.3.4s6
- OA Status
- diamond
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4250151652
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4250151652Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.7755/fb.116.3.4s6Digital Object Identifier
- Title
-
A multiyear hierarchical Bayesian mark-recapture model incorporating data on recurring salmonid behavior to account for sparse or missing data: Supplementary Figure 10Work title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2018Year of publication
- Publication date
-
2018-06-07Full publication date if available
- Authors
-
Bryce N. Oldemeyer, Timothy Copeland, Brian P. KennedyList of authors in order
- Landing page
-
https://doi.org/10.7755/fb.116.3.4s6Publisher landing page
- PDF URL
-
https://doi.org/10.7755/fb.116.3.4s6Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.7755/fb.116.3.4s6Direct OA link when available
- Concepts
-
Mark and recapture, Bayesian probability, Missing data, Computer science, Fishery, Bayesian inference, Maximum likelihood, Statistics, Artificial intelligence, Mathematics, Machine learning, Biology, Demography, Sociology, PopulationTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4250151652 |
|---|---|
| doi | https://doi.org/10.7755/fb.116.3.4s6 |
| ids.doi | https://doi.org/10.7755/fb.116.3.4s6 |
| ids.openalex | https://openalex.org/W4250151652 |
| fwci | 0.0 |
| type | article |
| title | A multiyear hierarchical Bayesian mark-recapture model incorporating data on recurring salmonid behavior to account for sparse or missing data: Supplementary Figure 10 |
| biblio.issue | 3 |
| biblio.volume | 116 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10302 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9991000294685364 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2309 |
| topics[0].subfield.display_name | Nature and Landscape Conservation |
| topics[0].display_name | Fish Ecology and Management Studies |
| topics[1].id | https://openalex.org/T10199 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9983000159263611 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2303 |
| topics[1].subfield.display_name | Ecology |
| topics[1].display_name | Wildlife Ecology and Conservation |
| topics[2].id | https://openalex.org/T10012 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.989300012588501 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1311 |
| topics[2].subfield.display_name | Genetics |
| topics[2].display_name | Genetic diversity and population structure |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C36528806 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7613416910171509 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q796147 |
| concepts[0].display_name | Mark and recapture |
| concepts[1].id | https://openalex.org/C107673813 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6344285011291504 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[1].display_name | Bayesian probability |
| concepts[2].id | https://openalex.org/C9357733 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5742998719215393 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q6878417 |
| concepts[2].display_name | Missing data |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.4879972040653229 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C505870484 |
| concepts[4].level | 1 |
| concepts[4].score | 0.48705556988716125 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q180538 |
| concepts[4].display_name | Fishery |
| concepts[5].id | https://openalex.org/C160234255 |
| concepts[5].level | 3 |
| concepts[5].score | 0.4322199821472168 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q812535 |
| concepts[5].display_name | Bayesian inference |
| concepts[6].id | https://openalex.org/C49781872 |
| concepts[6].level | 2 |
| concepts[6].score | 0.42037928104400635 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1045555 |
| concepts[6].display_name | Maximum likelihood |
| concepts[7].id | https://openalex.org/C105795698 |
| concepts[7].level | 1 |
| concepts[7].score | 0.33519232273101807 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[7].display_name | Statistics |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.2993893623352051 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.2322637140750885 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C119857082 |
| concepts[10].level | 1 |
| concepts[10].score | 0.1786194145679474 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[10].display_name | Machine learning |
| concepts[11].id | https://openalex.org/C86803240 |
| concepts[11].level | 0 |
| concepts[11].score | 0.14273536205291748 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[11].display_name | Biology |
| concepts[12].id | https://openalex.org/C149923435 |
| concepts[12].level | 1 |
| concepts[12].score | 0.06840863823890686 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q37732 |
| concepts[12].display_name | Demography |
| concepts[13].id | https://openalex.org/C144024400 |
| concepts[13].level | 0 |
| concepts[13].score | 0.06700652837753296 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[13].display_name | Sociology |
| concepts[14].id | https://openalex.org/C2908647359 |
| concepts[14].level | 2 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q2625603 |
| concepts[14].display_name | Population |
| keywords[0].id | https://openalex.org/keywords/mark-and-recapture |
| keywords[0].score | 0.7613416910171509 |
| keywords[0].display_name | Mark and recapture |
| keywords[1].id | https://openalex.org/keywords/bayesian-probability |
| keywords[1].score | 0.6344285011291504 |
| keywords[1].display_name | Bayesian probability |
| keywords[2].id | https://openalex.org/keywords/missing-data |
| keywords[2].score | 0.5742998719215393 |
| keywords[2].display_name | Missing data |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.4879972040653229 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/fishery |
| keywords[4].score | 0.48705556988716125 |
| keywords[4].display_name | Fishery |
| keywords[5].id | https://openalex.org/keywords/bayesian-inference |
| keywords[5].score | 0.4322199821472168 |
| keywords[5].display_name | Bayesian inference |
| keywords[6].id | https://openalex.org/keywords/maximum-likelihood |
| keywords[6].score | 0.42037928104400635 |
| keywords[6].display_name | Maximum likelihood |
| keywords[7].id | https://openalex.org/keywords/statistics |
| keywords[7].score | 0.33519232273101807 |
| keywords[7].display_name | Statistics |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.2993893623352051 |
| keywords[8].display_name | Artificial intelligence |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.2322637140750885 |
| keywords[9].display_name | Mathematics |
| keywords[10].id | https://openalex.org/keywords/machine-learning |
| keywords[10].score | 0.1786194145679474 |
| keywords[10].display_name | Machine learning |
| keywords[11].id | https://openalex.org/keywords/biology |
| keywords[11].score | 0.14273536205291748 |
| keywords[11].display_name | Biology |
| keywords[12].id | https://openalex.org/keywords/demography |
| keywords[12].score | 0.06840863823890686 |
| keywords[12].display_name | Demography |
| keywords[13].id | https://openalex.org/keywords/sociology |
| keywords[13].score | 0.06700652837753296 |
| keywords[13].display_name | Sociology |
| language | en |
| locations[0].id | doi:10.7755/fb.116.3.4s6 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S131537223 |
| locations[0].source.issn | 0090-0656, 1937-4518 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 0090-0656 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Fishery Bulletin |
| locations[0].source.host_organization | https://openalex.org/P4310315696 |
| locations[0].source.host_organization_name | National Oceanic and Atmospheric Administration |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310315696 |
| locations[0].source.host_organization_lineage_names | National Oceanic and Atmospheric Administration |
| locations[0].license | |
| locations[0].pdf_url | https://doi.org/10.7755/fb.116.3.4s6 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Fishery Bulletin |
| locations[0].landing_page_url | https://doi.org/10.7755/fb.116.3.4s6 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5066792456 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Bryce N. Oldemeyer |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Bryce N. Oldemeyer |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5079117500 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Timothy Copeland |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Timothy Copeland |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5110411377 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Brian P. Kennedy |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Brian P. Kennedy |
| authorships[2].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.7755/fb.116.3.4s6 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A multiyear hierarchical Bayesian mark-recapture model incorporating data on recurring salmonid behavior to account for sparse or missing data: Supplementary Figure 10 |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10302 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9991000294685364 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2309 |
| primary_topic.subfield.display_name | Nature and Landscape Conservation |
| primary_topic.display_name | Fish Ecology and Management Studies |
| related_works | https://openalex.org/W1919985504, https://openalex.org/W2407375987, https://openalex.org/W2950975704, https://openalex.org/W3049691116, https://openalex.org/W2010643158, https://openalex.org/W2505726097, https://openalex.org/W2106867672, https://openalex.org/W4310268968, https://openalex.org/W3081214562, https://openalex.org/W2753713401 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.7755/fb.116.3.4s6 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S131537223 |
| best_oa_location.source.issn | 0090-0656, 1937-4518 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 0090-0656 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Fishery Bulletin |
| best_oa_location.source.host_organization | https://openalex.org/P4310315696 |
| best_oa_location.source.host_organization_name | National Oceanic and Atmospheric Administration |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310315696 |
| best_oa_location.source.host_organization_lineage_names | National Oceanic and Atmospheric Administration |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://doi.org/10.7755/fb.116.3.4s6 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Fishery Bulletin |
| best_oa_location.landing_page_url | https://doi.org/10.7755/fb.116.3.4s6 |
| primary_location.id | doi:10.7755/fb.116.3.4s6 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S131537223 |
| primary_location.source.issn | 0090-0656, 1937-4518 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 0090-0656 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Fishery Bulletin |
| primary_location.source.host_organization | https://openalex.org/P4310315696 |
| primary_location.source.host_organization_name | National Oceanic and Atmospheric Administration |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310315696 |
| primary_location.source.host_organization_lineage_names | National Oceanic and Atmospheric Administration |
| primary_location.license | |
| primary_location.pdf_url | https://doi.org/10.7755/fb.116.3.4s6 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Fishery Bulletin |
| primary_location.landing_page_url | https://doi.org/10.7755/fb.116.3.4s6 |
| publication_date | 2018-06-07 |
| publication_year | 2018 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 37, 42 |
| abstract_inverted_index.as | 17 |
| abstract_inverted_index.at | 36 |
| abstract_inverted_index.by | 27 |
| abstract_inverted_index.in | 23 |
| abstract_inverted_index.of | 1, 20, 30, 66, 105 |
| abstract_inverted_index.on | 47 |
| abstract_inverted_index.or | 34, 90, 93 |
| abstract_inverted_index.to | 87 |
| abstract_inverted_index.(u) | 5 |
| abstract_inverted_index.1.5 | 94, 106 |
| abstract_inverted_index.Big | 48 |
| abstract_inverted_index.and | 11, 63, 72, 77, 99 |
| abstract_inverted_index.box | 57, 68, 85 |
| abstract_inverted_index.for | 41 |
| abstract_inverted_index.raw | 2, 12 |
| abstract_inverted_index.the | 18, 24, 28, 56, 59, 61, 67, 70, 80, 84, 88, 96, 108 |
| abstract_inverted_index.(the | 75 |
| abstract_inverted_index.25th | 76 |
| abstract_inverted_index.75th | 78 |
| abstract_inverted_index.dots | 100 |
| abstract_inverted_index.line | 54 |
| abstract_inverted_index.trap | 14, 45 |
| abstract_inverted_index.edges | 65 |
| abstract_inverted_index.event | 39 |
| abstract_inverted_index.first | 71 |
| abstract_inverted_index.lines | 81 |
| abstract_inverted_index.lower | 64 |
| abstract_inverted_index.screw | 44 |
| abstract_inverted_index.third | 73 |
| abstract_inverted_index.times | 95, 107 |
| abstract_inverted_index.upper | 62 |
| abstract_inverted_index.(m/n), | 40 |
| abstract_inverted_index.Creek, | 49 |
| abstract_inverted_index.Idaho, | 50 |
| abstract_inverted_index.beyond | 83 |
| abstract_inverted_index.during | 51 |
| abstract_inverted_index.marked | 21, 31 |
| abstract_inverted_index.middle | 53 |
| abstract_inverted_index.number | 19, 29 |
| abstract_inverted_index.range, | 98 |
| abstract_inverted_index.rotary | 43 |
| abstract_inverted_index.salmon | 8 |
| abstract_inverted_index.values | 92 |
| abstract_inverted_index.weekly | 3, 13 |
| abstract_inverted_index.within | 55 |
| abstract_inverted_index.(values | 103 |
| abstract_inverted_index.Boxplot | 0 |
| abstract_inverted_index.Chinook | 7 |
| abstract_inverted_index.counted | 33 |
| abstract_inverted_index.divided | 26 |
| abstract_inverted_index.largest | 89 |
| abstract_inverted_index.median, | 60 |
| abstract_inverted_index.outside | 104 |
| abstract_inverted_index.range). | 110 |
| abstract_inverted_index.captured | 35 |
| abstract_inverted_index.deployed | 46 |
| abstract_inverted_index.juvenile | 6 |
| abstract_inverted_index.measured | 16 |
| abstract_inverted_index.outliers | 102 |
| abstract_inverted_index.sampling | 38 |
| abstract_inverted_index.smallest | 91 |
| abstract_inverted_index.abundance | 4 |
| abstract_inverted_index.extending | 82 |
| abstract_inverted_index.quartiles | 74 |
| abstract_inverted_index.represent | 69, 101 |
| abstract_inverted_index.correspond | 86 |
| abstract_inverted_index.population | 25 |
| abstract_inverted_index.represents | 58 |
| abstract_inverted_index.efficiency, | 15 |
| abstract_inverted_index.individuals | 22, 32 |
| abstract_inverted_index.tshawytscha) | 10 |
| abstract_inverted_index.(Oncorhynchus | 9 |
| abstract_inverted_index.2007-2014.The | 52 |
| abstract_inverted_index.interquartile | 97, 109 |
| abstract_inverted_index.percentiles), | 79 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.2883277 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |