A network security situation prediction model based on wavelet neural network with optimized parameters Article Swipe
YOU?
·
· 2016
· Open Access
·
· DOI: https://doi.org/10.1016/j.dcan.2016.06.003
The security incidents ion networks are sudden and uncertain, it is very hard to precisely predict the network security situation by traditional methods. In order to improve the prediction accuracy of the network security situation, we build a network security situation prediction model based on Wavelet Neural Network (WNN) with optimized parameters by the Improved Niche Genetic Algorithm (INGA). The proposed model adopts WNN which has strong nonlinear ability and fault-tolerance performance. Also, the parameters for WNN are optimized through the adaptive genetic algorithm (GA) so that WNN searches more effectively. Considering the problem that the adaptive GA converges slowly and easily turns to the premature problem, we introduce a novel niche technology with a dynamic fuzzy clustering and elimination mechanism to solve the premature convergence of the GA. Our final simulation results show that the proposed INGA-WNN prediction model is more reliable and effective, and it achieves faster convergence-speed and higher prediction accuracy than the Genetic Algorithm-Wavelet Neural Network (GA-WNN), Genetic Algorithm-Back Propagation Neural Network (GA-BPNN) and WNN.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.dcan.2016.06.003
- OA Status
- diamond
- Cited By
- 40
- References
- 33
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2473222750
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2473222750Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.dcan.2016.06.003Digital Object Identifier
- Title
-
A network security situation prediction model based on wavelet neural network with optimized parametersWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2016Year of publication
- Publication date
-
2016-07-10Full publication date if available
- Authors
-
Haibo Zhang, Qing Huang, Fangwei Li, Jiang ZhuList of authors in order
- Landing page
-
https://doi.org/10.1016/j.dcan.2016.06.003Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.dcan.2016.06.003Direct OA link when available
- Concepts
-
Computer science, Genetic algorithm, Artificial neural network, Premature convergence, Convergence (economics), Data mining, Cluster analysis, Artificial intelligence, Algorithm, Machine learning, Economics, Economic growthTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
40Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 5, 2024: 3, 2023: 7, 2022: 5, 2021: 9Per-year citation counts (last 5 years)
- References (count)
-
33Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2473222750 |
|---|---|
| doi | https://doi.org/10.1016/j.dcan.2016.06.003 |
| ids.doi | https://doi.org/10.1016/j.dcan.2016.06.003 |
| ids.mag | 2473222750 |
| ids.openalex | https://openalex.org/W2473222750 |
| fwci | 2.08974623 |
| type | article |
| title | A network security situation prediction model based on wavelet neural network with optimized parameters |
| awards[0].id | https://openalex.org/G1958803198 |
| awards[0].funder_id | https://openalex.org/F4320327726 |
| awards[0].display_name | |
| awards[0].funder_award_id | cstc2015jcyjA40050 |
| awards[0].funder_display_name | Natural Science Foundation Project of Chongqing, Chongqing Science and Technology Commission |
| awards[1].id | https://openalex.org/G4692543455 |
| awards[1].funder_id | https://openalex.org/F4320321001 |
| awards[1].display_name | |
| awards[1].funder_award_id | 61301122 |
| awards[1].funder_display_name | National Natural Science Foundation of China |
| awards[2].id | https://openalex.org/G7848836069 |
| awards[2].funder_id | https://openalex.org/F4320327726 |
| awards[2].display_name | |
| awards[2].funder_award_id | cstc2014jcyjA40052 |
| awards[2].funder_display_name | Natural Science Foundation Project of Chongqing, Chongqing Science and Technology Commission |
| awards[3].id | https://openalex.org/G7067957164 |
| awards[3].funder_id | https://openalex.org/F4320321001 |
| awards[3].display_name | |
| awards[3].funder_award_id | 61271260 |
| awards[3].funder_display_name | National Natural Science Foundation of China |
| awards[4].id | https://openalex.org/G2206356612 |
| awards[4].funder_id | https://openalex.org/F4320324805 |
| awards[4].display_name | |
| awards[4].funder_award_id | KJ1400405 |
| awards[4].funder_display_name | Chongqing Municipal Education Commission |
| biblio.issue | 3 |
| biblio.volume | 2 |
| biblio.last_page | 144 |
| biblio.first_page | 139 |
| topics[0].id | https://openalex.org/T10400 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9983000159263611 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1705 |
| topics[0].subfield.display_name | Computer Networks and Communications |
| topics[0].display_name | Network Security and Intrusion Detection |
| topics[1].id | https://openalex.org/T13731 |
| topics[1].field.id | https://openalex.org/fields/33 |
| topics[1].field.display_name | Social Sciences |
| topics[1].score | 0.9715999960899353 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3322 |
| topics[1].subfield.display_name | Urban Studies |
| topics[1].display_name | Advanced Computing and Algorithms |
| topics[2].id | https://openalex.org/T13955 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.9643999934196472 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2302 |
| topics[2].subfield.display_name | Ecological Modeling |
| topics[2].display_name | Evaluation Methods in Various Fields |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320322687 |
| funders[1].ror | https://ror.org/03dgaqz26 |
| funders[1].display_name | Chongqing University of Posts and Telecommunications |
| funders[2].id | https://openalex.org/F4320324805 |
| funders[2].ror | https://ror.org/031nm5713 |
| funders[2].display_name | Chongqing Municipal Education Commission |
| funders[3].id | https://openalex.org/F4320327726 |
| funders[3].ror | |
| funders[3].display_name | Natural Science Foundation Project of Chongqing, Chongqing Science and Technology Commission |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8341798782348633 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C8880873 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6545665860176086 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q187787 |
| concepts[1].display_name | Genetic algorithm |
| concepts[2].id | https://openalex.org/C50644808 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5978754758834839 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[2].display_name | Artificial neural network |
| concepts[3].id | https://openalex.org/C58758708 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5750817060470581 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7240233 |
| concepts[3].display_name | Premature convergence |
| concepts[4].id | https://openalex.org/C2777303404 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5464436411857605 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q759757 |
| concepts[4].display_name | Convergence (economics) |
| concepts[5].id | https://openalex.org/C124101348 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4464053809642792 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[5].display_name | Data mining |
| concepts[6].id | https://openalex.org/C73555534 |
| concepts[6].level | 2 |
| concepts[6].score | 0.42843517661094666 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q622825 |
| concepts[6].display_name | Cluster analysis |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.40944379568099976 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C11413529 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3880954384803772 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[8].display_name | Algorithm |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.29472917318344116 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C162324750 |
| concepts[10].level | 0 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[10].display_name | Economics |
| concepts[11].id | https://openalex.org/C50522688 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q189833 |
| concepts[11].display_name | Economic growth |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8341798782348633 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/genetic-algorithm |
| keywords[1].score | 0.6545665860176086 |
| keywords[1].display_name | Genetic algorithm |
| keywords[2].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[2].score | 0.5978754758834839 |
| keywords[2].display_name | Artificial neural network |
| keywords[3].id | https://openalex.org/keywords/premature-convergence |
| keywords[3].score | 0.5750817060470581 |
| keywords[3].display_name | Premature convergence |
| keywords[4].id | https://openalex.org/keywords/convergence |
| keywords[4].score | 0.5464436411857605 |
| keywords[4].display_name | Convergence (economics) |
| keywords[5].id | https://openalex.org/keywords/data-mining |
| keywords[5].score | 0.4464053809642792 |
| keywords[5].display_name | Data mining |
| keywords[6].id | https://openalex.org/keywords/cluster-analysis |
| keywords[6].score | 0.42843517661094666 |
| keywords[6].display_name | Cluster analysis |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.40944379568099976 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/algorithm |
| keywords[8].score | 0.3880954384803772 |
| keywords[8].display_name | Algorithm |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.29472917318344116 |
| keywords[9].display_name | Machine learning |
| language | en |
| locations[0].id | doi:10.1016/j.dcan.2016.06.003 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2495769766 |
| locations[0].source.issn | 2352-8648, 2468-5925 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2352-8648 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Digital Communications and Networks |
| locations[0].source.host_organization | https://openalex.org/P4310320345 |
| locations[0].source.host_organization_name | KeAi |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320345, https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | KeAi, Elsevier BV |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Digital Communications and Networks |
| locations[0].landing_page_url | https://doi.org/10.1016/j.dcan.2016.06.003 |
| locations[1].id | pmh:oai:doaj.org/article:30491898506e4c2bbfe282fd030b9c16 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Digital Communications and Networks, Vol 2, Iss 3, Pp 139-144 (2016) |
| locations[1].landing_page_url | https://doaj.org/article/30491898506e4c2bbfe282fd030b9c16 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5100415757 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3752-0806 |
| authorships[0].author.display_name | Haibo Zhang |
| authorships[0].countries | CN, US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I137902535 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27695, USA |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I10535382 |
| authorships[0].affiliations[1].raw_affiliation_string | Chongqing Key Lab of Mobile Communications Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China |
| authorships[0].institutions[0].id | https://openalex.org/I10535382 |
| authorships[0].institutions[0].ror | https://ror.org/03dgaqz26 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I10535382 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Chongqing University of Posts and Telecommunications |
| authorships[0].institutions[1].id | https://openalex.org/I137902535 |
| authorships[0].institutions[1].ror | https://ror.org/04tj63d06 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I137902535 |
| authorships[0].institutions[1].country_code | US |
| authorships[0].institutions[1].display_name | North Carolina State University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Haibo Zhang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Chongqing Key Lab of Mobile Communications Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China, Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27695, USA |
| authorships[1].author.id | https://openalex.org/A5031518241 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7083-9416 |
| authorships[1].author.display_name | Qing Huang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I10535382 |
| authorships[1].affiliations[0].raw_affiliation_string | Chongqing Key Lab of Mobile Communications Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China |
| authorships[1].institutions[0].id | https://openalex.org/I10535382 |
| authorships[1].institutions[0].ror | https://ror.org/03dgaqz26 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I10535382 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Chongqing University of Posts and Telecommunications |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Qing Huang |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Chongqing Key Lab of Mobile Communications Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China |
| authorships[2].author.id | https://openalex.org/A5102002293 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Fangwei Li |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I10535382 |
| authorships[2].affiliations[0].raw_affiliation_string | Chongqing Key Lab of Mobile Communications Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China |
| authorships[2].institutions[0].id | https://openalex.org/I10535382 |
| authorships[2].institutions[0].ror | https://ror.org/03dgaqz26 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I10535382 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Chongqing University of Posts and Telecommunications |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Fangwei Li |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Chongqing Key Lab of Mobile Communications Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China |
| authorships[3].author.id | https://openalex.org/A5100694509 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4726-2206 |
| authorships[3].author.display_name | Jiang Zhu |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I10535382 |
| authorships[3].affiliations[0].raw_affiliation_string | Chongqing Key Lab of Mobile Communications Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China |
| authorships[3].institutions[0].id | https://openalex.org/I10535382 |
| authorships[3].institutions[0].ror | https://ror.org/03dgaqz26 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I10535382 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Chongqing University of Posts and Telecommunications |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Jiang Zhu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Chongqing Key Lab of Mobile Communications Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.dcan.2016.06.003 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A network security situation prediction model based on wavelet neural network with optimized parameters |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10400 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9983000159263611 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1705 |
| primary_topic.subfield.display_name | Computer Networks and Communications |
| primary_topic.display_name | Network Security and Intrusion Detection |
| related_works | https://openalex.org/W2372415543, https://openalex.org/W2354205711, https://openalex.org/W2808717917, https://openalex.org/W2377292223, https://openalex.org/W2366584243, https://openalex.org/W2376563992, https://openalex.org/W2360006733, https://openalex.org/W4304590249, https://openalex.org/W2366368367, https://openalex.org/W2385996327 |
| cited_by_count | 40 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 5 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 7 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 5 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 9 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 4 |
| counts_by_year[6].year | 2019 |
| counts_by_year[6].cited_by_count | 2 |
| counts_by_year[7].year | 2018 |
| counts_by_year[7].cited_by_count | 3 |
| counts_by_year[8].year | 2017 |
| counts_by_year[8].cited_by_count | 1 |
| counts_by_year[9].year | 2016 |
| counts_by_year[9].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1016/j.dcan.2016.06.003 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2495769766 |
| best_oa_location.source.issn | 2352-8648, 2468-5925 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2352-8648 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Digital Communications and Networks |
| best_oa_location.source.host_organization | https://openalex.org/P4310320345 |
| best_oa_location.source.host_organization_name | KeAi |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320345, https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | KeAi, Elsevier BV |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Digital Communications and Networks |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.dcan.2016.06.003 |
| primary_location.id | doi:10.1016/j.dcan.2016.06.003 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2495769766 |
| primary_location.source.issn | 2352-8648, 2468-5925 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2352-8648 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Digital Communications and Networks |
| primary_location.source.host_organization | https://openalex.org/P4310320345 |
| primary_location.source.host_organization_name | KeAi |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320345, https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | KeAi, Elsevier BV |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Digital Communications and Networks |
| primary_location.landing_page_url | https://doi.org/10.1016/j.dcan.2016.06.003 |
| publication_date | 2016-07-10 |
| publication_year | 2016 |
| referenced_works | https://openalex.org/W2410640132, https://openalex.org/W2343044157, https://openalex.org/W1562524385, https://openalex.org/W1955817489, https://openalex.org/W2099100270, https://openalex.org/W6726659869, https://openalex.org/W6996241143, https://openalex.org/W2160951215, https://openalex.org/W1972062587, https://openalex.org/W2018636589, https://openalex.org/W7021099630, https://openalex.org/W2116189018, https://openalex.org/W2046383960, https://openalex.org/W2358059637, https://openalex.org/W2394122797, https://openalex.org/W2369586874, https://openalex.org/W2150291692, https://openalex.org/W3006225738, https://openalex.org/W2353124530, https://openalex.org/W1974060104, https://openalex.org/W2053658258, https://openalex.org/W2121160646, https://openalex.org/W2167360858, https://openalex.org/W6655946511, https://openalex.org/W2394233548, https://openalex.org/W2518727987, https://openalex.org/W2375984962, https://openalex.org/W2387143975, https://openalex.org/W2251985815, https://openalex.org/W2183108960, https://openalex.org/W2113319207, https://openalex.org/W2021937206, https://openalex.org/W2926651972 |
| referenced_works_count | 33 |
| abstract_inverted_index.a | 37, 109, 114 |
| abstract_inverted_index.GA | 97 |
| abstract_inverted_index.In | 23 |
| abstract_inverted_index.by | 20, 52 |
| abstract_inverted_index.is | 10, 140 |
| abstract_inverted_index.it | 9, 146 |
| abstract_inverted_index.of | 30, 126 |
| abstract_inverted_index.on | 44 |
| abstract_inverted_index.so | 85 |
| abstract_inverted_index.to | 13, 25, 103, 121 |
| abstract_inverted_index.we | 35, 107 |
| abstract_inverted_index.GA. | 128 |
| abstract_inverted_index.Our | 129 |
| abstract_inverted_index.The | 0, 59 |
| abstract_inverted_index.WNN | 63, 76, 87 |
| abstract_inverted_index.and | 7, 69, 100, 118, 143, 145, 150, 167 |
| abstract_inverted_index.are | 5, 77 |
| abstract_inverted_index.for | 75 |
| abstract_inverted_index.has | 65 |
| abstract_inverted_index.ion | 3 |
| abstract_inverted_index.the | 16, 27, 31, 53, 73, 80, 92, 95, 104, 123, 127, 135, 155 |
| abstract_inverted_index.(GA) | 84 |
| abstract_inverted_index.WNN. | 168 |
| abstract_inverted_index.hard | 12 |
| abstract_inverted_index.more | 89, 141 |
| abstract_inverted_index.show | 133 |
| abstract_inverted_index.than | 154 |
| abstract_inverted_index.that | 86, 94, 134 |
| abstract_inverted_index.very | 11 |
| abstract_inverted_index.with | 49, 113 |
| abstract_inverted_index.(WNN) | 48 |
| abstract_inverted_index.Also, | 72 |
| abstract_inverted_index.Niche | 55 |
| abstract_inverted_index.based | 43 |
| abstract_inverted_index.build | 36 |
| abstract_inverted_index.final | 130 |
| abstract_inverted_index.fuzzy | 116 |
| abstract_inverted_index.model | 42, 61, 139 |
| abstract_inverted_index.niche | 111 |
| abstract_inverted_index.novel | 110 |
| abstract_inverted_index.order | 24 |
| abstract_inverted_index.solve | 122 |
| abstract_inverted_index.turns | 102 |
| abstract_inverted_index.which | 64 |
| abstract_inverted_index.Neural | 46, 158, 164 |
| abstract_inverted_index.adopts | 62 |
| abstract_inverted_index.easily | 101 |
| abstract_inverted_index.faster | 148 |
| abstract_inverted_index.higher | 151 |
| abstract_inverted_index.slowly | 99 |
| abstract_inverted_index.strong | 66 |
| abstract_inverted_index.sudden | 6 |
| abstract_inverted_index.(INGA). | 58 |
| abstract_inverted_index.Genetic | 56, 156, 161 |
| abstract_inverted_index.Network | 47, 159, 165 |
| abstract_inverted_index.Wavelet | 45 |
| abstract_inverted_index.ability | 68 |
| abstract_inverted_index.dynamic | 115 |
| abstract_inverted_index.genetic | 82 |
| abstract_inverted_index.improve | 26 |
| abstract_inverted_index.network | 17, 32, 38 |
| abstract_inverted_index.predict | 15 |
| abstract_inverted_index.problem | 93 |
| abstract_inverted_index.results | 132 |
| abstract_inverted_index.through | 79 |
| abstract_inverted_index.INGA-WNN | 137 |
| abstract_inverted_index.Improved | 54 |
| abstract_inverted_index.accuracy | 29, 153 |
| abstract_inverted_index.achieves | 147 |
| abstract_inverted_index.adaptive | 81, 96 |
| abstract_inverted_index.methods. | 22 |
| abstract_inverted_index.networks | 4 |
| abstract_inverted_index.problem, | 106 |
| abstract_inverted_index.proposed | 60, 136 |
| abstract_inverted_index.reliable | 142 |
| abstract_inverted_index.searches | 88 |
| abstract_inverted_index.security | 1, 18, 33, 39 |
| abstract_inverted_index.(GA-BPNN) | 166 |
| abstract_inverted_index.(GA-WNN), | 160 |
| abstract_inverted_index.Algorithm | 57 |
| abstract_inverted_index.algorithm | 83 |
| abstract_inverted_index.converges | 98 |
| abstract_inverted_index.incidents | 2 |
| abstract_inverted_index.introduce | 108 |
| abstract_inverted_index.mechanism | 120 |
| abstract_inverted_index.nonlinear | 67 |
| abstract_inverted_index.optimized | 50, 78 |
| abstract_inverted_index.precisely | 14 |
| abstract_inverted_index.premature | 105, 124 |
| abstract_inverted_index.situation | 19, 40 |
| abstract_inverted_index.clustering | 117 |
| abstract_inverted_index.effective, | 144 |
| abstract_inverted_index.parameters | 51, 74 |
| abstract_inverted_index.prediction | 28, 41, 138, 152 |
| abstract_inverted_index.simulation | 131 |
| abstract_inverted_index.situation, | 34 |
| abstract_inverted_index.technology | 112 |
| abstract_inverted_index.uncertain, | 8 |
| abstract_inverted_index.Considering | 91 |
| abstract_inverted_index.Propagation | 163 |
| abstract_inverted_index.convergence | 125 |
| abstract_inverted_index.elimination | 119 |
| abstract_inverted_index.traditional | 21 |
| abstract_inverted_index.effectively. | 90 |
| abstract_inverted_index.performance. | 71 |
| abstract_inverted_index.Algorithm-Back | 162 |
| abstract_inverted_index.fault-tolerance | 70 |
| abstract_inverted_index.Algorithm-Wavelet | 157 |
| abstract_inverted_index.convergence-speed | 149 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 90 |
| corresponding_author_ids | https://openalex.org/A5031518241 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I10535382 |
| citation_normalized_percentile.value | 0.88908297 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |