A Neural Network for Detailed Human Depth Estimation from a Single Image Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1910.01275
This paper presents a neural network to estimate a detailed depth map of the foreground human in a single RGB image. The result captures geometry details such as cloth wrinkles, which are important in visualization applications. To achieve this goal, we separate the depth map into a smooth base shape and a residual detail shape and design a network with two branches to regress them respectively. We design a training strategy to ensure both base and detail shapes can be faithfully learned by the corresponding network branches. Furthermore, we introduce a novel network layer to fuse a rough depth map and surface normals to further improve the final result. Quantitative comparison with fused `ground truth' captured by real depth cameras and qualitative examples on unconstrained Internet images demonstrate the strength of the proposed method. The code is available at https://github.com/sfu-gruvi-3dv/deep_human.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/1910.01275
- https://arxiv.org/pdf/1910.01275
- OA Status
- green
- Cited By
- 1
- References
- 36
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2979168069
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2979168069Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.1910.01275Digital Object Identifier
- Title
-
A Neural Network for Detailed Human Depth Estimation from a Single ImageWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-10-03Full publication date if available
- Authors
-
Sicong Tang, Feitong Tan, Kelvin Cheng, Zhaoyang Li, Siyu Zhu, Ping TanList of authors in order
- Landing page
-
https://arxiv.org/abs/1910.01275Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/1910.01275Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1910.01275Direct OA link when available
- Concepts
-
Artificial intelligence, Computer science, Fuse (electrical), Artificial neural network, Depth map, Ground truth, RGB color model, Residual, Base (topology), Computer vision, Code (set theory), Image (mathematics), Surface (topology), Visualization, Scheme (mathematics), Pattern recognition (psychology), Algorithm, Mathematics, Geometry, Engineering, Programming language, Set (abstract data type), Electrical engineering, Mathematical analysisTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1Per-year citation counts (last 5 years)
- References (count)
-
36Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2979168069 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.1910.01275 |
| ids.doi | https://doi.org/10.48550/arxiv.1910.01275 |
| ids.mag | 2979168069 |
| ids.openalex | https://openalex.org/W2979168069 |
| fwci | |
| type | preprint |
| title | A Neural Network for Detailed Human Depth Estimation from a Single Image |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10531 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Vision and Imaging |
| topics[1].id | https://openalex.org/T10812 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9986000061035156 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Human Pose and Action Recognition |
| topics[2].id | https://openalex.org/T10331 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9955000281333923 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Video Surveillance and Tracking Methods |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C154945302 |
| concepts[0].level | 1 |
| concepts[0].score | 0.7233543395996094 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[0].display_name | Artificial intelligence |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6963766813278198 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C141353440 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6577784419059753 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q182221 |
| concepts[2].display_name | Fuse (electrical) |
| concepts[3].id | https://openalex.org/C50644808 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6497646570205688 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[3].display_name | Artificial neural network |
| concepts[4].id | https://openalex.org/C141268832 |
| concepts[4].level | 3 |
| concepts[4].score | 0.6373599171638489 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2940499 |
| concepts[4].display_name | Depth map |
| concepts[5].id | https://openalex.org/C146849305 |
| concepts[5].level | 2 |
| concepts[5].score | 0.6096172332763672 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q370766 |
| concepts[5].display_name | Ground truth |
| concepts[6].id | https://openalex.org/C82990744 |
| concepts[6].level | 2 |
| concepts[6].score | 0.6044844388961792 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q166194 |
| concepts[6].display_name | RGB color model |
| concepts[7].id | https://openalex.org/C155512373 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5737873315811157 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q287450 |
| concepts[7].display_name | Residual |
| concepts[8].id | https://openalex.org/C42058472 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5565534830093384 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q810214 |
| concepts[8].display_name | Base (topology) |
| concepts[9].id | https://openalex.org/C31972630 |
| concepts[9].level | 1 |
| concepts[9].score | 0.5487037301063538 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[9].display_name | Computer vision |
| concepts[10].id | https://openalex.org/C2776760102 |
| concepts[10].level | 3 |
| concepts[10].score | 0.5482323169708252 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q5139990 |
| concepts[10].display_name | Code (set theory) |
| concepts[11].id | https://openalex.org/C115961682 |
| concepts[11].level | 2 |
| concepts[11].score | 0.5161886811256409 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[11].display_name | Image (mathematics) |
| concepts[12].id | https://openalex.org/C2776799497 |
| concepts[12].level | 2 |
| concepts[12].score | 0.48530954122543335 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q484298 |
| concepts[12].display_name | Surface (topology) |
| concepts[13].id | https://openalex.org/C36464697 |
| concepts[13].level | 2 |
| concepts[13].score | 0.4846692383289337 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q451553 |
| concepts[13].display_name | Visualization |
| concepts[14].id | https://openalex.org/C77618280 |
| concepts[14].level | 2 |
| concepts[14].score | 0.41673314571380615 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q1155772 |
| concepts[14].display_name | Scheme (mathematics) |
| concepts[15].id | https://openalex.org/C153180895 |
| concepts[15].level | 2 |
| concepts[15].score | 0.37509891390800476 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[15].display_name | Pattern recognition (psychology) |
| concepts[16].id | https://openalex.org/C11413529 |
| concepts[16].level | 1 |
| concepts[16].score | 0.17908456921577454 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[16].display_name | Algorithm |
| concepts[17].id | https://openalex.org/C33923547 |
| concepts[17].level | 0 |
| concepts[17].score | 0.17549914121627808 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[17].display_name | Mathematics |
| concepts[18].id | https://openalex.org/C2524010 |
| concepts[18].level | 1 |
| concepts[18].score | 0.11580091714859009 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[18].display_name | Geometry |
| concepts[19].id | https://openalex.org/C127413603 |
| concepts[19].level | 0 |
| concepts[19].score | 0.08301743865013123 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[19].display_name | Engineering |
| concepts[20].id | https://openalex.org/C199360897 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[20].display_name | Programming language |
| concepts[21].id | https://openalex.org/C177264268 |
| concepts[21].level | 2 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[21].display_name | Set (abstract data type) |
| concepts[22].id | https://openalex.org/C119599485 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[22].display_name | Electrical engineering |
| concepts[23].id | https://openalex.org/C134306372 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[23].display_name | Mathematical analysis |
| keywords[0].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[0].score | 0.7233543395996094 |
| keywords[0].display_name | Artificial intelligence |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6963766813278198 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/fuse |
| keywords[2].score | 0.6577784419059753 |
| keywords[2].display_name | Fuse (electrical) |
| keywords[3].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[3].score | 0.6497646570205688 |
| keywords[3].display_name | Artificial neural network |
| keywords[4].id | https://openalex.org/keywords/depth-map |
| keywords[4].score | 0.6373599171638489 |
| keywords[4].display_name | Depth map |
| keywords[5].id | https://openalex.org/keywords/ground-truth |
| keywords[5].score | 0.6096172332763672 |
| keywords[5].display_name | Ground truth |
| keywords[6].id | https://openalex.org/keywords/rgb-color-model |
| keywords[6].score | 0.6044844388961792 |
| keywords[6].display_name | RGB color model |
| keywords[7].id | https://openalex.org/keywords/residual |
| keywords[7].score | 0.5737873315811157 |
| keywords[7].display_name | Residual |
| keywords[8].id | https://openalex.org/keywords/base |
| keywords[8].score | 0.5565534830093384 |
| keywords[8].display_name | Base (topology) |
| keywords[9].id | https://openalex.org/keywords/computer-vision |
| keywords[9].score | 0.5487037301063538 |
| keywords[9].display_name | Computer vision |
| keywords[10].id | https://openalex.org/keywords/code |
| keywords[10].score | 0.5482323169708252 |
| keywords[10].display_name | Code (set theory) |
| keywords[11].id | https://openalex.org/keywords/image |
| keywords[11].score | 0.5161886811256409 |
| keywords[11].display_name | Image (mathematics) |
| keywords[12].id | https://openalex.org/keywords/surface |
| keywords[12].score | 0.48530954122543335 |
| keywords[12].display_name | Surface (topology) |
| keywords[13].id | https://openalex.org/keywords/visualization |
| keywords[13].score | 0.4846692383289337 |
| keywords[13].display_name | Visualization |
| keywords[14].id | https://openalex.org/keywords/scheme |
| keywords[14].score | 0.41673314571380615 |
| keywords[14].display_name | Scheme (mathematics) |
| keywords[15].id | https://openalex.org/keywords/pattern-recognition |
| keywords[15].score | 0.37509891390800476 |
| keywords[15].display_name | Pattern recognition (psychology) |
| keywords[16].id | https://openalex.org/keywords/algorithm |
| keywords[16].score | 0.17908456921577454 |
| keywords[16].display_name | Algorithm |
| keywords[17].id | https://openalex.org/keywords/mathematics |
| keywords[17].score | 0.17549914121627808 |
| keywords[17].display_name | Mathematics |
| keywords[18].id | https://openalex.org/keywords/geometry |
| keywords[18].score | 0.11580091714859009 |
| keywords[18].display_name | Geometry |
| keywords[19].id | https://openalex.org/keywords/engineering |
| keywords[19].score | 0.08301743865013123 |
| keywords[19].display_name | Engineering |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:1910.01275 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/1910.01275 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/1910.01275 |
| locations[1].id | doi:10.48550/arxiv.1910.01275 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.1910.01275 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5101444702 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6943-0074 |
| authorships[0].author.display_name | Sicong Tang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Sicong Tang |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5025919556 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7606-1331 |
| authorships[1].author.display_name | Feitong Tan |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Feitong Tan |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5075186287 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2779-9150 |
| authorships[2].author.display_name | Kelvin Cheng |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Kelvin Cheng |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100457039 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-2851-6506 |
| authorships[3].author.display_name | Zhaoyang Li |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zhaoyang Li |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5013549550 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-0293-0044 |
| authorships[4].author.display_name | Siyu Zhu |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Siyu Zhu |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5084953118 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-4506-6973 |
| authorships[5].author.display_name | Ping Tan |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Ping Tan |
| authorships[5].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1910.01275 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Neural Network for Detailed Human Depth Estimation from a Single Image |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10531 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Vision and Imaging |
| related_works | https://openalex.org/W3000097931, https://openalex.org/W2354322770, https://openalex.org/W4237547500, https://openalex.org/W1570848052, https://openalex.org/W2373192430, https://openalex.org/W4239268388, https://openalex.org/W4243305035, https://openalex.org/W3102673927, https://openalex.org/W2327954668, https://openalex.org/W3202440119 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:1910.01275 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1910.01275 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1910.01275 |
| primary_location.id | pmh:oai:arXiv.org:1910.01275 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/1910.01275 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/1910.01275 |
| publication_date | 2019-10-03 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2057243908, https://openalex.org/W1901129140, https://openalex.org/W2576289912, https://openalex.org/W2963598138, https://openalex.org/W2798927139, https://openalex.org/W2461005315, https://openalex.org/W2963583471, https://openalex.org/W2545173102, https://openalex.org/W2495081533, https://openalex.org/W2612706635, https://openalex.org/W2794739174, https://openalex.org/W2963654727, https://openalex.org/W2890474520, https://openalex.org/W1625949922, https://openalex.org/W2554247908, https://openalex.org/W2611932403, https://openalex.org/W2797515701, https://openalex.org/W2963906250, https://openalex.org/W2609883120, https://openalex.org/W2963995996, https://openalex.org/W2134484928, https://openalex.org/W2573098616, https://openalex.org/W2171740948, https://openalex.org/W1905368000, https://openalex.org/W2398640840, https://openalex.org/W2793768642, https://openalex.org/W2883983474, https://openalex.org/W2028401795, https://openalex.org/W1989191365, https://openalex.org/W2962816904, https://openalex.org/W2113325037, https://openalex.org/W2307770531, https://openalex.org/W2483862638, https://openalex.org/W2951845164, https://openalex.org/W2962754033, https://openalex.org/W2963876278 |
| referenced_works_count | 36 |
| abstract_inverted_index.a | 3, 8, 17, 46, 51, 57, 68, 90, 96 |
| abstract_inverted_index.To | 36 |
| abstract_inverted_index.We | 66 |
| abstract_inverted_index.as | 27 |
| abstract_inverted_index.at | 138 |
| abstract_inverted_index.be | 79 |
| abstract_inverted_index.by | 82, 116 |
| abstract_inverted_index.in | 16, 33 |
| abstract_inverted_index.is | 136 |
| abstract_inverted_index.of | 12, 130 |
| abstract_inverted_index.on | 123 |
| abstract_inverted_index.to | 6, 62, 71, 94, 103 |
| abstract_inverted_index.we | 40, 88 |
| abstract_inverted_index.RGB | 19 |
| abstract_inverted_index.The | 21, 134 |
| abstract_inverted_index.and | 50, 55, 75, 100, 120 |
| abstract_inverted_index.are | 31 |
| abstract_inverted_index.can | 78 |
| abstract_inverted_index.map | 11, 44, 99 |
| abstract_inverted_index.the | 13, 42, 83, 106, 128, 131 |
| abstract_inverted_index.two | 60 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.base | 48, 74 |
| abstract_inverted_index.both | 73 |
| abstract_inverted_index.code | 135 |
| abstract_inverted_index.fuse | 95 |
| abstract_inverted_index.into | 45 |
| abstract_inverted_index.real | 117 |
| abstract_inverted_index.such | 26 |
| abstract_inverted_index.them | 64 |
| abstract_inverted_index.this | 38 |
| abstract_inverted_index.with | 59, 111 |
| abstract_inverted_index.cloth | 28 |
| abstract_inverted_index.depth | 10, 43, 98, 118 |
| abstract_inverted_index.final | 107 |
| abstract_inverted_index.fused | 112 |
| abstract_inverted_index.goal, | 39 |
| abstract_inverted_index.human | 15 |
| abstract_inverted_index.layer | 93 |
| abstract_inverted_index.novel | 91 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.rough | 97 |
| abstract_inverted_index.shape | 49, 54 |
| abstract_inverted_index.which | 30 |
| abstract_inverted_index.design | 56, 67 |
| abstract_inverted_index.detail | 53, 76 |
| abstract_inverted_index.ensure | 72 |
| abstract_inverted_index.image. | 20 |
| abstract_inverted_index.images | 126 |
| abstract_inverted_index.neural | 4 |
| abstract_inverted_index.result | 22 |
| abstract_inverted_index.shapes | 77 |
| abstract_inverted_index.single | 18 |
| abstract_inverted_index.smooth | 47 |
| abstract_inverted_index.truth' | 114 |
| abstract_inverted_index.`ground | 113 |
| abstract_inverted_index.achieve | 37 |
| abstract_inverted_index.cameras | 119 |
| abstract_inverted_index.details | 25 |
| abstract_inverted_index.further | 104 |
| abstract_inverted_index.improve | 105 |
| abstract_inverted_index.learned | 81 |
| abstract_inverted_index.method. | 133 |
| abstract_inverted_index.network | 5, 58, 85, 92 |
| abstract_inverted_index.normals | 102 |
| abstract_inverted_index.regress | 63 |
| abstract_inverted_index.result. | 108 |
| abstract_inverted_index.surface | 101 |
| abstract_inverted_index.Internet | 125 |
| abstract_inverted_index.branches | 61 |
| abstract_inverted_index.captured | 115 |
| abstract_inverted_index.captures | 23 |
| abstract_inverted_index.detailed | 9 |
| abstract_inverted_index.estimate | 7 |
| abstract_inverted_index.examples | 122 |
| abstract_inverted_index.geometry | 24 |
| abstract_inverted_index.presents | 2 |
| abstract_inverted_index.proposed | 132 |
| abstract_inverted_index.residual | 52 |
| abstract_inverted_index.separate | 41 |
| abstract_inverted_index.strategy | 70 |
| abstract_inverted_index.strength | 129 |
| abstract_inverted_index.training | 69 |
| abstract_inverted_index.available | 137 |
| abstract_inverted_index.branches. | 86 |
| abstract_inverted_index.important | 32 |
| abstract_inverted_index.introduce | 89 |
| abstract_inverted_index.wrinkles, | 29 |
| abstract_inverted_index.comparison | 110 |
| abstract_inverted_index.faithfully | 80 |
| abstract_inverted_index.foreground | 14 |
| abstract_inverted_index.demonstrate | 127 |
| abstract_inverted_index.qualitative | 121 |
| abstract_inverted_index.Furthermore, | 87 |
| abstract_inverted_index.Quantitative | 109 |
| abstract_inverted_index.applications. | 35 |
| abstract_inverted_index.corresponding | 84 |
| abstract_inverted_index.respectively. | 65 |
| abstract_inverted_index.unconstrained | 124 |
| abstract_inverted_index.visualization | 34 |
| abstract_inverted_index.https://github.com/sfu-gruvi-3dv/deep_human. | 139 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |