A Neural Network Model for Attacker Detection using GRU and Modified Kernel of SVM Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.35940/ijrte.b3337.078219
over past few decades neural network changed the way of traditional computing many different models has proposed depending upon data intensity, predictions, and recognition and so on. Among which Gated Recurrent Unit (GRU) is created for variety of long short-term memory (LSTM) unit, which is part of recurrent neural network (RNN). These models proved to be dominant for range of machine learning job such as predictions, speech recognition, sentiment analysis and natural language processing. In this proposed model, a support vector machine (SVM) with modified kernel as final output layer for prediction is used instead of traditional approach of softmax and log loss function is used to calculate the loss. Proposed technique is applied for binary classification for intrusion detection using honeypot dataset (2013) network traffic sequence of Kyoto University. Results shows a prominent change in training efficiency of ≈89.45% and testing efficiency of ≈88.15% when compared with softmax output layer. We can conclude that linear SVM with modified kernel as output layer outperform compared with softmax in prediction time.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.35940/ijrte.b3337.078219
- OA Status
- diamond
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4250457667
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4250457667Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.35940/ijrte.b3337.078219Digital Object Identifier
- Title
-
A Neural Network Model for Attacker Detection using GRU and Modified Kernel of SVMWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-07-30Full publication date if available
- Authors
-
Sharfuddin Waseem Mohammed, C. Madan Kumar, Narasimha Reddy SooraList of authors in order
- Landing page
-
https://doi.org/10.35940/ijrte.b3337.078219Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.35940/ijrte.b3337.078219Direct OA link when available
- Concepts
-
Softmax function, Computer science, Support vector machine, Artificial intelligence, Artificial neural network, Recurrent neural network, Kernel (algebra), Machine learning, Kernel method, Pattern recognition (psychology), Speech recognition, Mathematics, CombinatoricsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4250457667 |
|---|---|
| doi | https://doi.org/10.35940/ijrte.b3337.078219 |
| ids.doi | https://doi.org/10.35940/ijrte.b3337.078219 |
| ids.openalex | https://openalex.org/W4250457667 |
| fwci | 0.0 |
| type | article |
| title | A Neural Network Model for Attacker Detection using GRU and Modified Kernel of SVM |
| biblio.issue | 2 |
| biblio.volume | 9 |
| biblio.last_page | 4444 |
| biblio.first_page | 4441 |
| topics[0].id | https://openalex.org/T10400 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9937999844551086 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1705 |
| topics[0].subfield.display_name | Computer Networks and Communications |
| topics[0].display_name | Network Security and Intrusion Detection |
| topics[1].id | https://openalex.org/T11512 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9013000130653381 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Anomaly Detection Techniques and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C188441871 |
| concepts[0].level | 3 |
| concepts[0].score | 0.9819940328598022 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q7554146 |
| concepts[0].display_name | Softmax function |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.713596522808075 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C12267149 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7057927250862122 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[2].display_name | Support vector machine |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6216028332710266 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C50644808 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5898792743682861 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[4].display_name | Artificial neural network |
| concepts[5].id | https://openalex.org/C147168706 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5813901424407959 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1457734 |
| concepts[5].display_name | Recurrent neural network |
| concepts[6].id | https://openalex.org/C74193536 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5535168051719666 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q574844 |
| concepts[6].display_name | Kernel (algebra) |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.5139538645744324 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C122280245 |
| concepts[8].level | 3 |
| concepts[8].score | 0.47463950514793396 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q620622 |
| concepts[8].display_name | Kernel method |
| concepts[9].id | https://openalex.org/C153180895 |
| concepts[9].level | 2 |
| concepts[9].score | 0.44449129700660706 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[9].display_name | Pattern recognition (psychology) |
| concepts[10].id | https://openalex.org/C28490314 |
| concepts[10].level | 1 |
| concepts[10].score | 0.32923710346221924 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q189436 |
| concepts[10].display_name | Speech recognition |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.09189927577972412 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C114614502 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[12].display_name | Combinatorics |
| keywords[0].id | https://openalex.org/keywords/softmax-function |
| keywords[0].score | 0.9819940328598022 |
| keywords[0].display_name | Softmax function |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.713596522808075 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/support-vector-machine |
| keywords[2].score | 0.7057927250862122 |
| keywords[2].display_name | Support vector machine |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.6216028332710266 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[4].score | 0.5898792743682861 |
| keywords[4].display_name | Artificial neural network |
| keywords[5].id | https://openalex.org/keywords/recurrent-neural-network |
| keywords[5].score | 0.5813901424407959 |
| keywords[5].display_name | Recurrent neural network |
| keywords[6].id | https://openalex.org/keywords/kernel |
| keywords[6].score | 0.5535168051719666 |
| keywords[6].display_name | Kernel (algebra) |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.5139538645744324 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/kernel-method |
| keywords[8].score | 0.47463950514793396 |
| keywords[8].display_name | Kernel method |
| keywords[9].id | https://openalex.org/keywords/pattern-recognition |
| keywords[9].score | 0.44449129700660706 |
| keywords[9].display_name | Pattern recognition (psychology) |
| keywords[10].id | https://openalex.org/keywords/speech-recognition |
| keywords[10].score | 0.32923710346221924 |
| keywords[10].display_name | Speech recognition |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.09189927577972412 |
| keywords[11].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.35940/ijrte.b3337.078219 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210169567 |
| locations[0].source.issn | 2277-3878 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2277-3878 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Journal of Recent Technology and Engineering (IJRTE) |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Recent Technology and Engineering (IJRTE) |
| locations[0].landing_page_url | https://doi.org/10.35940/ijrte.b3337.078219 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5030864940 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1909-3115 |
| authorships[0].author.display_name | Sharfuddin Waseem Mohammed |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Sharfuddin Waseem Mohammed |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5028109676 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7425-2348 |
| authorships[1].author.display_name | C. Madan Kumar |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | C. Madan Kumar |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5046489855 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2268-0022 |
| authorships[2].author.display_name | Narasimha Reddy Soora |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Narasimha Reddy Soora |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.35940/ijrte.b3337.078219 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2022-05-12T00:00:00 |
| display_name | A Neural Network Model for Attacker Detection using GRU and Modified Kernel of SVM |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10400 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9937999844551086 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1705 |
| primary_topic.subfield.display_name | Computer Networks and Communications |
| primary_topic.display_name | Network Security and Intrusion Detection |
| related_works | https://openalex.org/W2089892314, https://openalex.org/W1603091392, https://openalex.org/W4386075310, https://openalex.org/W2095626363, https://openalex.org/W2169565408, https://openalex.org/W2127229869, https://openalex.org/W3123056048, https://openalex.org/W2129978300, https://openalex.org/W2150638158, https://openalex.org/W2121506664 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.35940/ijrte.b3337.078219 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210169567 |
| best_oa_location.source.issn | 2277-3878 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2277-3878 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Journal of Recent Technology and Engineering (IJRTE) |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Recent Technology and Engineering (IJRTE) |
| best_oa_location.landing_page_url | https://doi.org/10.35940/ijrte.b3337.078219 |
| primary_location.id | doi:10.35940/ijrte.b3337.078219 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210169567 |
| primary_location.source.issn | 2277-3878 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2277-3878 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Journal of Recent Technology and Engineering (IJRTE) |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Recent Technology and Engineering (IJRTE) |
| primary_location.landing_page_url | https://doi.org/10.35940/ijrte.b3337.078219 |
| publication_date | 2019-07-30 |
| publication_year | 2019 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 78, 132 |
| abstract_inverted_index.In | 74 |
| abstract_inverted_index.We | 151 |
| abstract_inverted_index.as | 64, 86, 160 |
| abstract_inverted_index.be | 55 |
| abstract_inverted_index.in | 135, 167 |
| abstract_inverted_index.is | 33, 44, 92, 104, 112 |
| abstract_inverted_index.of | 9, 37, 46, 59, 95, 98, 127, 138, 143 |
| abstract_inverted_index.so | 25 |
| abstract_inverted_index.to | 54, 106 |
| abstract_inverted_index.SVM | 156 |
| abstract_inverted_index.and | 22, 24, 70, 100, 140 |
| abstract_inverted_index.can | 152 |
| abstract_inverted_index.few | 2 |
| abstract_inverted_index.for | 35, 57, 90, 114, 117 |
| abstract_inverted_index.has | 15 |
| abstract_inverted_index.job | 62 |
| abstract_inverted_index.log | 101 |
| abstract_inverted_index.on. | 26 |
| abstract_inverted_index.the | 7, 108 |
| abstract_inverted_index.way | 8 |
| abstract_inverted_index.Unit | 31 |
| abstract_inverted_index.data | 19 |
| abstract_inverted_index.long | 38 |
| abstract_inverted_index.loss | 102 |
| abstract_inverted_index.many | 12 |
| abstract_inverted_index.over | 0 |
| abstract_inverted_index.part | 45 |
| abstract_inverted_index.past | 1 |
| abstract_inverted_index.such | 63 |
| abstract_inverted_index.that | 154 |
| abstract_inverted_index.this | 75 |
| abstract_inverted_index.upon | 18 |
| abstract_inverted_index.used | 93, 105 |
| abstract_inverted_index.when | 145 |
| abstract_inverted_index.with | 83, 147, 157, 165 |
| abstract_inverted_index.(GRU) | 32 |
| abstract_inverted_index.(SVM) | 82 |
| abstract_inverted_index.Among | 27 |
| abstract_inverted_index.Gated | 29 |
| abstract_inverted_index.Kyoto | 128 |
| abstract_inverted_index.These | 51 |
| abstract_inverted_index.final | 87 |
| abstract_inverted_index.layer | 89, 162 |
| abstract_inverted_index.loss. | 109 |
| abstract_inverted_index.range | 58 |
| abstract_inverted_index.shows | 131 |
| abstract_inverted_index.time. | 169 |
| abstract_inverted_index.unit, | 42 |
| abstract_inverted_index.using | 120 |
| abstract_inverted_index.which | 28, 43 |
| abstract_inverted_index.(2013) | 123 |
| abstract_inverted_index.(LSTM) | 41 |
| abstract_inverted_index.(RNN). | 50 |
| abstract_inverted_index.binary | 115 |
| abstract_inverted_index.change | 134 |
| abstract_inverted_index.kernel | 85, 159 |
| abstract_inverted_index.layer. | 150 |
| abstract_inverted_index.linear | 155 |
| abstract_inverted_index.memory | 40 |
| abstract_inverted_index.model, | 77 |
| abstract_inverted_index.models | 14, 52 |
| abstract_inverted_index.neural | 4, 48 |
| abstract_inverted_index.output | 88, 149, 161 |
| abstract_inverted_index.proved | 53 |
| abstract_inverted_index.speech | 66 |
| abstract_inverted_index.vector | 80 |
| abstract_inverted_index.Results | 130 |
| abstract_inverted_index.applied | 113 |
| abstract_inverted_index.changed | 6 |
| abstract_inverted_index.created | 34 |
| abstract_inverted_index.dataset | 122 |
| abstract_inverted_index.decades | 3 |
| abstract_inverted_index.instead | 94 |
| abstract_inverted_index.machine | 60, 81 |
| abstract_inverted_index.natural | 71 |
| abstract_inverted_index.network | 5, 49, 124 |
| abstract_inverted_index.softmax | 99, 148, 166 |
| abstract_inverted_index.support | 79 |
| abstract_inverted_index.testing | 141 |
| abstract_inverted_index.traffic | 125 |
| abstract_inverted_index.variety | 36 |
| abstract_inverted_index.Proposed | 110 |
| abstract_inverted_index.analysis | 69 |
| abstract_inverted_index.approach | 97 |
| abstract_inverted_index.compared | 146, 164 |
| abstract_inverted_index.conclude | 153 |
| abstract_inverted_index.dominant | 56 |
| abstract_inverted_index.function | 103 |
| abstract_inverted_index.honeypot | 121 |
| abstract_inverted_index.language | 72 |
| abstract_inverted_index.learning | 61 |
| abstract_inverted_index.modified | 84, 158 |
| abstract_inverted_index.proposed | 16, 76 |
| abstract_inverted_index.sequence | 126 |
| abstract_inverted_index.training | 136 |
| abstract_inverted_index.Recurrent | 30 |
| abstract_inverted_index.calculate | 107 |
| abstract_inverted_index.computing | 11 |
| abstract_inverted_index.depending | 17 |
| abstract_inverted_index.detection | 119 |
| abstract_inverted_index.different | 13 |
| abstract_inverted_index.intrusion | 118 |
| abstract_inverted_index.prominent | 133 |
| abstract_inverted_index.recurrent | 47 |
| abstract_inverted_index.sentiment | 68 |
| abstract_inverted_index.technique | 111 |
| abstract_inverted_index.≈88.15% | 144 |
| abstract_inverted_index.≈89.45% | 139 |
| abstract_inverted_index.efficiency | 137, 142 |
| abstract_inverted_index.intensity, | 20 |
| abstract_inverted_index.outperform | 163 |
| abstract_inverted_index.prediction | 91, 168 |
| abstract_inverted_index.short-term | 39 |
| abstract_inverted_index.University. | 129 |
| abstract_inverted_index.processing. | 73 |
| abstract_inverted_index.recognition | 23 |
| abstract_inverted_index.traditional | 10, 96 |
| abstract_inverted_index.predictions, | 21, 65 |
| abstract_inverted_index.recognition, | 67 |
| abstract_inverted_index.classification | 116 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.7799999713897705 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile.value | 0.35743896 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |