A new approach to LST modeling and normalization under clear-sky conditions based on a local optimization strategy Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1080/17538947.2022.2137254
The normalization of LST relative to environmental parameters is of great importance in various environmental applications. The purpose of this study was to develop a new approach for LST normalization relative to environmental variables. These included topographic variables (i.e. solar irradiance and near-surface temperature lapse rate (NSTLR)) as well as biophysical properties (i.e. vegetation, wetness, and albedo). The study was conducted in two phases, namely (1) using global and (2) local optimization strategies to calculate the regression coefficients of environmental variables in the partial least squares regression (PLSR) and build the non-linear linking model in the random forest regression (RFR). The RMSEs between actual LST and modeled LST based on the global and local optimization strategies using PLSR (RFR) were 2.202 (0.935) and 0.939 (0.835) °C, respectively. The results showed that RFR had higher efficiency than PLSR in normalizing LST. Moreover, the local optimization method outperformed the global optimization method in terms of normalization accuracy. The results of this study could be very useful in many environmental applications such as identifying thermal anomalies, and surface anthropogenic heat island modeling.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1080/17538947.2022.2137254
- OA Status
- gold
- Cited By
- 5
- References
- 61
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4308999170
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4308999170Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1080/17538947.2022.2137254Digital Object Identifier
- Title
-
A new approach to LST modeling and normalization under clear-sky conditions based on a local optimization strategyWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-11-14Full publication date if available
- Authors
-
Majid Kiavarz, Mohammad Karimi Firozjaei, Seyed Kazem Alavipanah, Quazi K. Hassan, Yoann Malbéteau, Si‐Bo DuanList of authors in order
- Landing page
-
https://doi.org/10.1080/17538947.2022.2137254Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1080/17538947.2022.2137254Direct OA link when available
- Concepts
-
Normalization (sociology), Partial least squares regression, Random forest, Environmental science, Regression, Albedo (alchemy), Mathematics, Statistics, Computer science, Artificial intelligence, Performance art, Anthropology, Art history, Art, SociologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
5Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 1, 2023: 2Per-year citation counts (last 5 years)
- References (count)
-
61Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4308999170 |
|---|---|
| doi | https://doi.org/10.1080/17538947.2022.2137254 |
| ids.doi | https://doi.org/10.1080/17538947.2022.2137254 |
| ids.openalex | https://openalex.org/W4308999170 |
| fwci | 0.49142184 |
| type | article |
| title | A new approach to LST modeling and normalization under clear-sky conditions based on a local optimization strategy |
| biblio.issue | 1 |
| biblio.volume | 15 |
| biblio.last_page | 1854 |
| biblio.first_page | 1833 |
| topics[0].id | https://openalex.org/T10766 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2305 |
| topics[0].subfield.display_name | Environmental Engineering |
| topics[0].display_name | Urban Heat Island Mitigation |
| topics[1].id | https://openalex.org/T10121 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9853000044822693 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2215 |
| topics[1].subfield.display_name | Building and Construction |
| topics[1].display_name | Building Energy and Comfort Optimization |
| topics[2].id | https://openalex.org/T13890 |
| topics[2].field.id | https://openalex.org/fields/19 |
| topics[2].field.display_name | Earth and Planetary Sciences |
| topics[2].score | 0.9847000241279602 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1902 |
| topics[2].subfield.display_name | Atmospheric Science |
| topics[2].display_name | Remote Sensing and Land Use |
| is_xpac | False |
| apc_list.value | 2390 |
| apc_list.currency | USD |
| apc_list.value_usd | 2390 |
| apc_paid.value | 2390 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2390 |
| concepts[0].id | https://openalex.org/C136886441 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7538379430770874 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q926129 |
| concepts[0].display_name | Normalization (sociology) |
| concepts[1].id | https://openalex.org/C22354355 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7321716547012329 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q422009 |
| concepts[1].display_name | Partial least squares regression |
| concepts[2].id | https://openalex.org/C169258074 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5974617600440979 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q245748 |
| concepts[2].display_name | Random forest |
| concepts[3].id | https://openalex.org/C39432304 |
| concepts[3].level | 0 |
| concepts[3].score | 0.45787709951400757 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[3].display_name | Environmental science |
| concepts[4].id | https://openalex.org/C83546350 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4282700717449188 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1139051 |
| concepts[4].display_name | Regression |
| concepts[5].id | https://openalex.org/C195886398 |
| concepts[5].level | 3 |
| concepts[5].score | 0.42366713285446167 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2110050 |
| concepts[5].display_name | Albedo (alchemy) |
| concepts[6].id | https://openalex.org/C33923547 |
| concepts[6].level | 0 |
| concepts[6].score | 0.3383294343948364 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[6].display_name | Mathematics |
| concepts[7].id | https://openalex.org/C105795698 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3002798855304718 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[7].display_name | Statistics |
| concepts[8].id | https://openalex.org/C41008148 |
| concepts[8].level | 0 |
| concepts[8].score | 0.25995713472366333 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[8].display_name | Computer science |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.10608002543449402 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C554144382 |
| concepts[10].level | 2 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q213156 |
| concepts[10].display_name | Performance art |
| concepts[11].id | https://openalex.org/C19165224 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q23404 |
| concepts[11].display_name | Anthropology |
| concepts[12].id | https://openalex.org/C52119013 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q50637 |
| concepts[12].display_name | Art history |
| concepts[13].id | https://openalex.org/C142362112 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q735 |
| concepts[13].display_name | Art |
| concepts[14].id | https://openalex.org/C144024400 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[14].display_name | Sociology |
| keywords[0].id | https://openalex.org/keywords/normalization |
| keywords[0].score | 0.7538379430770874 |
| keywords[0].display_name | Normalization (sociology) |
| keywords[1].id | https://openalex.org/keywords/partial-least-squares-regression |
| keywords[1].score | 0.7321716547012329 |
| keywords[1].display_name | Partial least squares regression |
| keywords[2].id | https://openalex.org/keywords/random-forest |
| keywords[2].score | 0.5974617600440979 |
| keywords[2].display_name | Random forest |
| keywords[3].id | https://openalex.org/keywords/environmental-science |
| keywords[3].score | 0.45787709951400757 |
| keywords[3].display_name | Environmental science |
| keywords[4].id | https://openalex.org/keywords/regression |
| keywords[4].score | 0.4282700717449188 |
| keywords[4].display_name | Regression |
| keywords[5].id | https://openalex.org/keywords/albedo |
| keywords[5].score | 0.42366713285446167 |
| keywords[5].display_name | Albedo (alchemy) |
| keywords[6].id | https://openalex.org/keywords/mathematics |
| keywords[6].score | 0.3383294343948364 |
| keywords[6].display_name | Mathematics |
| keywords[7].id | https://openalex.org/keywords/statistics |
| keywords[7].score | 0.3002798855304718 |
| keywords[7].display_name | Statistics |
| keywords[8].id | https://openalex.org/keywords/computer-science |
| keywords[8].score | 0.25995713472366333 |
| keywords[8].display_name | Computer science |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.10608002543449402 |
| keywords[9].display_name | Artificial intelligence |
| language | en |
| locations[0].id | doi:10.1080/17538947.2022.2137254 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S199162493 |
| locations[0].source.issn | 1753-8947, 1753-8955 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1753-8947 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | International Journal of Digital Earth |
| locations[0].source.host_organization | https://openalex.org/P4310320547 |
| locations[0].source.host_organization_name | Taylor & Francis |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320547 |
| locations[0].source.host_organization_lineage_names | Taylor & Francis |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Digital Earth |
| locations[0].landing_page_url | https://doi.org/10.1080/17538947.2022.2137254 |
| locations[1].id | pmh:oai:doaj.org/article:0ebe29971f304ecc87d5dbea6211826c |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | International Journal of Digital Earth, Vol 15, Iss 1, Pp 1833-1854 (2022) |
| locations[1].landing_page_url | https://doaj.org/article/0ebe29971f304ecc87d5dbea6211826c |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5069682872 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0335-3795 |
| authorships[0].author.display_name | Majid Kiavarz |
| authorships[0].countries | IR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I23946033 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Remote Sensing and GIS, University of Tehran, Tehran, Iran |
| authorships[0].institutions[0].id | https://openalex.org/I23946033 |
| authorships[0].institutions[0].ror | https://ror.org/05vf56z40 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I23946033 |
| authorships[0].institutions[0].country_code | IR |
| authorships[0].institutions[0].display_name | University of Tehran |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Majid Kiavarz |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Remote Sensing and GIS, University of Tehran, Tehran, Iran |
| authorships[1].author.id | https://openalex.org/A5005491253 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3060-9162 |
| authorships[1].author.display_name | Mohammad Karimi Firozjaei |
| authorships[1].countries | IR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I23946033 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Remote Sensing and GIS, University of Tehran, Tehran, Iran |
| authorships[1].institutions[0].id | https://openalex.org/I23946033 |
| authorships[1].institutions[0].ror | https://ror.org/05vf56z40 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I23946033 |
| authorships[1].institutions[0].country_code | IR |
| authorships[1].institutions[0].display_name | University of Tehran |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Mohammad Karimi Firozjaei |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Remote Sensing and GIS, University of Tehran, Tehran, Iran |
| authorships[2].author.id | https://openalex.org/A5081309221 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3554-111X |
| authorships[2].author.display_name | Seyed Kazem Alavipanah |
| authorships[2].countries | IR |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I23946033 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Remote Sensing and GIS, University of Tehran, Tehran, Iran |
| authorships[2].institutions[0].id | https://openalex.org/I23946033 |
| authorships[2].institutions[0].ror | https://ror.org/05vf56z40 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I23946033 |
| authorships[2].institutions[0].country_code | IR |
| authorships[2].institutions[0].display_name | University of Tehran |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Seyed Kazem Alavipanah |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Remote Sensing and GIS, University of Tehran, Tehran, Iran |
| authorships[3].author.id | https://openalex.org/A5017817815 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-7034-359X |
| authorships[3].author.display_name | Quazi K. Hassan |
| authorships[3].countries | CA |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I168635309 |
| authorships[3].affiliations[0].raw_affiliation_string | Geomatics Engineering, Schulich School of Engineering, University of Calgary, Calgary, Canada |
| authorships[3].institutions[0].id | https://openalex.org/I168635309 |
| authorships[3].institutions[0].ror | https://ror.org/03yjb2x39 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I168635309 |
| authorships[3].institutions[0].country_code | CA |
| authorships[3].institutions[0].display_name | University of Calgary |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Quazi K. Hassan |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Geomatics Engineering, Schulich School of Engineering, University of Calgary, Calgary, Canada |
| authorships[4].author.id | https://openalex.org/A5050716420 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-2964-6409 |
| authorships[4].author.display_name | Yoann Malbéteau |
| authorships[4].countries | MA |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210131560 |
| authorships[4].affiliations[0].raw_affiliation_string | Center for Remote Sensing Applications, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco |
| authorships[4].institutions[0].id | https://openalex.org/I4210131560 |
| authorships[4].institutions[0].ror | https://ror.org/03xc55g68 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210131560 |
| authorships[4].institutions[0].country_code | MA |
| authorships[4].institutions[0].display_name | Université Mohammed VI Polytechnique |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Yoann Malbéteau |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Center for Remote Sensing Applications, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco |
| authorships[5].author.id | https://openalex.org/A5055755007 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-4390-2421 |
| authorships[5].author.display_name | Si‐Bo Duan |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210108914, https://openalex.org/I4210138501 |
| authorships[5].affiliations[0].raw_affiliation_string | Key Laboratory of Agricultural Remote Sensing, Ministry of Agriculture/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China |
| authorships[5].institutions[0].id | https://openalex.org/I4210138501 |
| authorships[5].institutions[0].ror | https://ror.org/0313jb750 |
| authorships[5].institutions[0].type | government |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210127390, https://openalex.org/I4210138501, https://openalex.org/I4210151987 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Chinese Academy of Agricultural Sciences |
| authorships[5].institutions[1].id | https://openalex.org/I4210108914 |
| authorships[5].institutions[1].ror | https://ror.org/01nrzdp21 |
| authorships[5].institutions[1].type | facility |
| authorships[5].institutions[1].lineage | https://openalex.org/I4210108914, https://openalex.org/I4210127390, https://openalex.org/I4210138501, https://openalex.org/I4210151987 |
| authorships[5].institutions[1].country_code | CN |
| authorships[5].institutions[1].display_name | Institute of Agricultural Resources and Regional Planning |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Si-Bo Duan |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Key Laboratory of Agricultural Remote Sensing, Ministry of Agriculture/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1080/17538947.2022.2137254 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A new approach to LST modeling and normalization under clear-sky conditions based on a local optimization strategy |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10766 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2305 |
| primary_topic.subfield.display_name | Environmental Engineering |
| primary_topic.display_name | Urban Heat Island Mitigation |
| related_works | https://openalex.org/W3135879790, https://openalex.org/W1984152394, https://openalex.org/W2552050053, https://openalex.org/W4297492264, https://openalex.org/W2843515192, https://openalex.org/W2053326843, https://openalex.org/W2119158312, https://openalex.org/W2765670492, https://openalex.org/W2049219354, https://openalex.org/W1968919190 |
| cited_by_count | 5 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1080/17538947.2022.2137254 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S199162493 |
| best_oa_location.source.issn | 1753-8947, 1753-8955 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1753-8947 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | International Journal of Digital Earth |
| best_oa_location.source.host_organization | https://openalex.org/P4310320547 |
| best_oa_location.source.host_organization_name | Taylor & Francis |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320547 |
| best_oa_location.source.host_organization_lineage_names | Taylor & Francis |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Digital Earth |
| best_oa_location.landing_page_url | https://doi.org/10.1080/17538947.2022.2137254 |
| primary_location.id | doi:10.1080/17538947.2022.2137254 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S199162493 |
| primary_location.source.issn | 1753-8947, 1753-8955 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1753-8947 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | International Journal of Digital Earth |
| primary_location.source.host_organization | https://openalex.org/P4310320547 |
| primary_location.source.host_organization_name | Taylor & Francis |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320547 |
| primary_location.source.host_organization_lineage_names | Taylor & Francis |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Digital Earth |
| primary_location.landing_page_url | https://doi.org/10.1080/17538947.2022.2137254 |
| publication_date | 2022-11-14 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2023485013, https://openalex.org/W1976228594, https://openalex.org/W2041570083, https://openalex.org/W2006149637, https://openalex.org/W2601995073, https://openalex.org/W2072650154, https://openalex.org/W2911964244, https://openalex.org/W1964453402, https://openalex.org/W2275846292, https://openalex.org/W2104487864, https://openalex.org/W3011712375, https://openalex.org/W4293252130, https://openalex.org/W4224028221, https://openalex.org/W2795463093, https://openalex.org/W3013237175, https://openalex.org/W2098106298, https://openalex.org/W2790520797, https://openalex.org/W2063554257, https://openalex.org/W2166884697, https://openalex.org/W2070939483, https://openalex.org/W2592389325, https://openalex.org/W2146645857, https://openalex.org/W2032167615, https://openalex.org/W2301692565, https://openalex.org/W4211148370, https://openalex.org/W2067542652, https://openalex.org/W2170797800, https://openalex.org/W2026337749, https://openalex.org/W2567491594, https://openalex.org/W2127125828, https://openalex.org/W2073815508, https://openalex.org/W2552941062, https://openalex.org/W2067104169, https://openalex.org/W2044290346, https://openalex.org/W2003067000, https://openalex.org/W2941672770, https://openalex.org/W2066737612, https://openalex.org/W1531146290, https://openalex.org/W2008575896, https://openalex.org/W1995446787, https://openalex.org/W2095052216, https://openalex.org/W2162280645, https://openalex.org/W2463926487, https://openalex.org/W2564251257, https://openalex.org/W2063623478, https://openalex.org/W1990312007, https://openalex.org/W1988192023, https://openalex.org/W2153763028, https://openalex.org/W2058529145, https://openalex.org/W2890936640, https://openalex.org/W2741291720, https://openalex.org/W2604949798, https://openalex.org/W2076447280, https://openalex.org/W2119358039, https://openalex.org/W1969666701, https://openalex.org/W2904391595, https://openalex.org/W2935933488, https://openalex.org/W2262341988, https://openalex.org/W4231539591, https://openalex.org/W4211019019, https://openalex.org/W2297871613 |
| referenced_works_count | 61 |
| abstract_inverted_index.a | 24 |
| abstract_inverted_index.as | 47, 49, 169 |
| abstract_inverted_index.be | 161 |
| abstract_inverted_index.in | 12, 61, 81, 94, 137, 150, 164 |
| abstract_inverted_index.is | 8 |
| abstract_inverted_index.of | 2, 9, 18, 78, 152, 157 |
| abstract_inverted_index.on | 109 |
| abstract_inverted_index.to | 5, 22, 31, 73 |
| abstract_inverted_index.(1) | 65 |
| abstract_inverted_index.(2) | 69 |
| abstract_inverted_index.LST | 3, 28, 104, 107 |
| abstract_inverted_index.RFR | 131 |
| abstract_inverted_index.The | 0, 16, 57, 100, 127, 155 |
| abstract_inverted_index.and | 41, 55, 68, 88, 105, 112, 122, 173 |
| abstract_inverted_index.for | 27 |
| abstract_inverted_index.had | 132 |
| abstract_inverted_index.new | 25 |
| abstract_inverted_index.the | 75, 82, 90, 95, 110, 141, 146 |
| abstract_inverted_index.two | 62 |
| abstract_inverted_index.was | 21, 59 |
| abstract_inverted_index.LST. | 139 |
| abstract_inverted_index.PLSR | 117, 136 |
| abstract_inverted_index.heat | 176 |
| abstract_inverted_index.many | 165 |
| abstract_inverted_index.rate | 45 |
| abstract_inverted_index.such | 168 |
| abstract_inverted_index.than | 135 |
| abstract_inverted_index.that | 130 |
| abstract_inverted_index.this | 19, 158 |
| abstract_inverted_index.very | 162 |
| abstract_inverted_index.well | 48 |
| abstract_inverted_index.were | 119 |
| abstract_inverted_index.°C, | 125 |
| abstract_inverted_index.(RFR) | 118 |
| abstract_inverted_index.(i.e. | 38, 52 |
| abstract_inverted_index.0.939 | 123 |
| abstract_inverted_index.2.202 | 120 |
| abstract_inverted_index.RMSEs | 101 |
| abstract_inverted_index.These | 34 |
| abstract_inverted_index.based | 108 |
| abstract_inverted_index.build | 89 |
| abstract_inverted_index.could | 160 |
| abstract_inverted_index.great | 10 |
| abstract_inverted_index.lapse | 44 |
| abstract_inverted_index.least | 84 |
| abstract_inverted_index.local | 70, 113, 142 |
| abstract_inverted_index.model | 93 |
| abstract_inverted_index.solar | 39 |
| abstract_inverted_index.study | 20, 58, 159 |
| abstract_inverted_index.terms | 151 |
| abstract_inverted_index.using | 66, 116 |
| abstract_inverted_index.(PLSR) | 87 |
| abstract_inverted_index.(RFR). | 99 |
| abstract_inverted_index.actual | 103 |
| abstract_inverted_index.forest | 97 |
| abstract_inverted_index.global | 67, 111, 147 |
| abstract_inverted_index.higher | 133 |
| abstract_inverted_index.island | 177 |
| abstract_inverted_index.method | 144, 149 |
| abstract_inverted_index.namely | 64 |
| abstract_inverted_index.random | 96 |
| abstract_inverted_index.showed | 129 |
| abstract_inverted_index.useful | 163 |
| abstract_inverted_index.(0.835) | 124 |
| abstract_inverted_index.(0.935) | 121 |
| abstract_inverted_index.between | 102 |
| abstract_inverted_index.develop | 23 |
| abstract_inverted_index.linking | 92 |
| abstract_inverted_index.modeled | 106 |
| abstract_inverted_index.partial | 83 |
| abstract_inverted_index.phases, | 63 |
| abstract_inverted_index.purpose | 17 |
| abstract_inverted_index.results | 128, 156 |
| abstract_inverted_index.squares | 85 |
| abstract_inverted_index.surface | 174 |
| abstract_inverted_index.thermal | 171 |
| abstract_inverted_index.various | 13 |
| abstract_inverted_index.(NSTLR)) | 46 |
| abstract_inverted_index.albedo). | 56 |
| abstract_inverted_index.approach | 26 |
| abstract_inverted_index.included | 35 |
| abstract_inverted_index.relative | 4, 30 |
| abstract_inverted_index.wetness, | 54 |
| abstract_inverted_index.Moreover, | 140 |
| abstract_inverted_index.accuracy. | 154 |
| abstract_inverted_index.calculate | 74 |
| abstract_inverted_index.conducted | 60 |
| abstract_inverted_index.modeling. | 178 |
| abstract_inverted_index.variables | 37, 80 |
| abstract_inverted_index.anomalies, | 172 |
| abstract_inverted_index.efficiency | 134 |
| abstract_inverted_index.importance | 11 |
| abstract_inverted_index.irradiance | 40 |
| abstract_inverted_index.non-linear | 91 |
| abstract_inverted_index.parameters | 7 |
| abstract_inverted_index.properties | 51 |
| abstract_inverted_index.regression | 76, 86, 98 |
| abstract_inverted_index.strategies | 72, 115 |
| abstract_inverted_index.variables. | 33 |
| abstract_inverted_index.biophysical | 50 |
| abstract_inverted_index.identifying | 170 |
| abstract_inverted_index.normalizing | 138 |
| abstract_inverted_index.temperature | 43 |
| abstract_inverted_index.topographic | 36 |
| abstract_inverted_index.vegetation, | 53 |
| abstract_inverted_index.applications | 167 |
| abstract_inverted_index.coefficients | 77 |
| abstract_inverted_index.near-surface | 42 |
| abstract_inverted_index.optimization | 71, 114, 143, 148 |
| abstract_inverted_index.outperformed | 145 |
| abstract_inverted_index.anthropogenic | 175 |
| abstract_inverted_index.applications. | 15 |
| abstract_inverted_index.environmental | 6, 14, 32, 79, 166 |
| abstract_inverted_index.normalization | 1, 29, 153 |
| abstract_inverted_index.respectively. | 126 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 90 |
| corresponding_author_ids | https://openalex.org/A5069682872 |
| countries_distinct_count | 4 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I23946033 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/15 |
| sustainable_development_goals[0].score | 0.6399999856948853 |
| sustainable_development_goals[0].display_name | Life in Land |
| citation_normalized_percentile.value | 0.58114712 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |