A New Approach to Overcoming Zero Trade in Gravity Models to Avoid Indefinite Values in Linear Logarithmic Equations and Parameter Verification Using Machine Learning Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2308.06303
The presence of a high number of zero flow trades continues to provide a challenge in identifying gravity parameters to explain international trade using the gravity model. Linear regression with a logarithmic linear equation encounters an indefinite value on the logarithmic trade. Although several approaches to solving this problem have been proposed, the majority of them are no longer based on linear regression, making the process of finding solutions more complex. In this work, we suggest a two-step technique for determining the gravity parameters: first, perform linear regression locally to establish a dummy value to substitute trade flow zero, and then estimating the gravity parameters. Iterative techniques are used to determine the optimum parameters. Machine learning is used to test the estimated parameters by analyzing their position in the cluster. We calculated international trade figures for 2004, 2009, 2014, and 2019. We just examine the classic gravity equation and discover that the powers of GDP and distance are in the same cluster and are both worth roughly one. The strategy presented here can be used to solve other problems involving log-linear regression.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2308.06303
- https://arxiv.org/pdf/2308.06303
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4385848376
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4385848376Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2308.06303Digital Object Identifier
- Title
-
A New Approach to Overcoming Zero Trade in Gravity Models to Avoid Indefinite Values in Linear Logarithmic Equations and Parameter Verification Using Machine LearningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-08-11Full publication date if available
- Authors
-
Mikrajuddin AbdullahList of authors in order
- Landing page
-
https://arxiv.org/abs/2308.06303Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2308.06303Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2308.06303Direct OA link when available
- Concepts
-
Logarithm, Linear regression, Mathematics, Linear equation, Gravity model of trade, Linear model, Zero (linguistics), Applied mathematics, Gravity equation, Value (mathematics), Mathematical optimization, Statistics, Mathematical analysis, Bilateral trade, Economics, Law, China, International trade, Political science, Philosophy, LinguisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4385848376 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2308.06303 |
| ids.doi | https://doi.org/10.48550/arxiv.2308.06303 |
| ids.openalex | https://openalex.org/W4385848376 |
| fwci | |
| type | preprint |
| title | A New Approach to Overcoming Zero Trade in Gravity Models to Avoid Indefinite Values in Linear Logarithmic Equations and Parameter Verification Using Machine Learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10128 |
| topics[0].field.id | https://openalex.org/fields/20 |
| topics[0].field.display_name | Economics, Econometrics and Finance |
| topics[0].score | 0.9793000221252441 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2000 |
| topics[0].subfield.display_name | General Economics, Econometrics and Finance |
| topics[0].display_name | Global trade and economics |
| topics[1].id | https://openalex.org/T14143 |
| topics[1].field.id | https://openalex.org/fields/20 |
| topics[1].field.display_name | Economics, Econometrics and Finance |
| topics[1].score | 0.9739999771118164 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2002 |
| topics[1].subfield.display_name | Economics and Econometrics |
| topics[1].display_name | Economic and Technological Innovation |
| topics[2].id | https://openalex.org/T10007 |
| topics[2].field.id | https://openalex.org/fields/20 |
| topics[2].field.display_name | Economics, Econometrics and Finance |
| topics[2].score | 0.9470000267028809 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2000 |
| topics[2].subfield.display_name | General Economics, Econometrics and Finance |
| topics[2].display_name | Monetary Policy and Economic Impact |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C39927690 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7454103231430054 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11197 |
| concepts[0].display_name | Logarithm |
| concepts[1].id | https://openalex.org/C48921125 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6166860461235046 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q10861030 |
| concepts[1].display_name | Linear regression |
| concepts[2].id | https://openalex.org/C33923547 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5372486114501953 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[2].display_name | Mathematics |
| concepts[3].id | https://openalex.org/C77346573 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5215634703636169 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q484637 |
| concepts[3].display_name | Linear equation |
| concepts[4].id | https://openalex.org/C87889798 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5171108245849609 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1543986 |
| concepts[4].display_name | Gravity model of trade |
| concepts[5].id | https://openalex.org/C163175372 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5143629312515259 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3339222 |
| concepts[5].display_name | Linear model |
| concepts[6].id | https://openalex.org/C2780813799 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4927106201648712 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q3274237 |
| concepts[6].display_name | Zero (linguistics) |
| concepts[7].id | https://openalex.org/C28826006 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4698680341243744 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q33521 |
| concepts[7].display_name | Applied mathematics |
| concepts[8].id | https://openalex.org/C2992128022 |
| concepts[8].level | 4 |
| concepts[8].score | 0.4541246294975281 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q5598083 |
| concepts[8].display_name | Gravity equation |
| concepts[9].id | https://openalex.org/C2776291640 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4268646836280823 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2912517 |
| concepts[9].display_name | Value (mathematics) |
| concepts[10].id | https://openalex.org/C126255220 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3820396661758423 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[10].display_name | Mathematical optimization |
| concepts[11].id | https://openalex.org/C105795698 |
| concepts[11].level | 1 |
| concepts[11].score | 0.2311420440673828 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[11].display_name | Statistics |
| concepts[12].id | https://openalex.org/C134306372 |
| concepts[12].level | 1 |
| concepts[12].score | 0.20514065027236938 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[12].display_name | Mathematical analysis |
| concepts[13].id | https://openalex.org/C2780967403 |
| concepts[13].level | 3 |
| concepts[13].score | 0.1573880910873413 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q256330 |
| concepts[13].display_name | Bilateral trade |
| concepts[14].id | https://openalex.org/C162324750 |
| concepts[14].level | 0 |
| concepts[14].score | 0.11331453919410706 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[14].display_name | Economics |
| concepts[15].id | https://openalex.org/C199539241 |
| concepts[15].level | 1 |
| concepts[15].score | 0.07347926497459412 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[15].display_name | Law |
| concepts[16].id | https://openalex.org/C191935318 |
| concepts[16].level | 2 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q148 |
| concepts[16].display_name | China |
| concepts[17].id | https://openalex.org/C155202549 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q178803 |
| concepts[17].display_name | International trade |
| concepts[18].id | https://openalex.org/C17744445 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[18].display_name | Political science |
| concepts[19].id | https://openalex.org/C138885662 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[19].display_name | Philosophy |
| concepts[20].id | https://openalex.org/C41895202 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[20].display_name | Linguistics |
| keywords[0].id | https://openalex.org/keywords/logarithm |
| keywords[0].score | 0.7454103231430054 |
| keywords[0].display_name | Logarithm |
| keywords[1].id | https://openalex.org/keywords/linear-regression |
| keywords[1].score | 0.6166860461235046 |
| keywords[1].display_name | Linear regression |
| keywords[2].id | https://openalex.org/keywords/mathematics |
| keywords[2].score | 0.5372486114501953 |
| keywords[2].display_name | Mathematics |
| keywords[3].id | https://openalex.org/keywords/linear-equation |
| keywords[3].score | 0.5215634703636169 |
| keywords[3].display_name | Linear equation |
| keywords[4].id | https://openalex.org/keywords/gravity-model-of-trade |
| keywords[4].score | 0.5171108245849609 |
| keywords[4].display_name | Gravity model of trade |
| keywords[5].id | https://openalex.org/keywords/linear-model |
| keywords[5].score | 0.5143629312515259 |
| keywords[5].display_name | Linear model |
| keywords[6].id | https://openalex.org/keywords/zero |
| keywords[6].score | 0.4927106201648712 |
| keywords[6].display_name | Zero (linguistics) |
| keywords[7].id | https://openalex.org/keywords/applied-mathematics |
| keywords[7].score | 0.4698680341243744 |
| keywords[7].display_name | Applied mathematics |
| keywords[8].id | https://openalex.org/keywords/gravity-equation |
| keywords[8].score | 0.4541246294975281 |
| keywords[8].display_name | Gravity equation |
| keywords[9].id | https://openalex.org/keywords/value |
| keywords[9].score | 0.4268646836280823 |
| keywords[9].display_name | Value (mathematics) |
| keywords[10].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[10].score | 0.3820396661758423 |
| keywords[10].display_name | Mathematical optimization |
| keywords[11].id | https://openalex.org/keywords/statistics |
| keywords[11].score | 0.2311420440673828 |
| keywords[11].display_name | Statistics |
| keywords[12].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[12].score | 0.20514065027236938 |
| keywords[12].display_name | Mathematical analysis |
| keywords[13].id | https://openalex.org/keywords/bilateral-trade |
| keywords[13].score | 0.1573880910873413 |
| keywords[13].display_name | Bilateral trade |
| keywords[14].id | https://openalex.org/keywords/economics |
| keywords[14].score | 0.11331453919410706 |
| keywords[14].display_name | Economics |
| keywords[15].id | https://openalex.org/keywords/law |
| keywords[15].score | 0.07347926497459412 |
| keywords[15].display_name | Law |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2308.06303 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2308.06303 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2308.06303 |
| locations[1].id | doi:10.48550/arxiv.2308.06303 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2308.06303 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5065376867 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5098-4712 |
| authorships[0].author.display_name | Mikrajuddin Abdullah |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Abdullah, Mikrajuddin |
| authorships[0].is_corresponding | True |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2308.06303 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-08-16T00:00:00 |
| display_name | A New Approach to Overcoming Zero Trade in Gravity Models to Avoid Indefinite Values in Linear Logarithmic Equations and Parameter Verification Using Machine Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10128 |
| primary_topic.field.id | https://openalex.org/fields/20 |
| primary_topic.field.display_name | Economics, Econometrics and Finance |
| primary_topic.score | 0.9793000221252441 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2000 |
| primary_topic.subfield.display_name | General Economics, Econometrics and Finance |
| primary_topic.display_name | Global trade and economics |
| related_works | https://openalex.org/W3123754483, https://openalex.org/W1584509013, https://openalex.org/W3121383441, https://openalex.org/W3141777482, https://openalex.org/W3124605192, https://openalex.org/W3124376665, https://openalex.org/W3121805210, https://openalex.org/W67010448, https://openalex.org/W1482832665, https://openalex.org/W2367049875 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2308.06303 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2308.06303 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2308.06303 |
| primary_location.id | pmh:oai:arXiv.org:2308.06303 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2308.06303 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2308.06303 |
| publication_date | 2023-08-11 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 3, 13, 30, 76, 91 |
| abstract_inverted_index.In | 71 |
| abstract_inverted_index.We | 130, 141 |
| abstract_inverted_index.an | 35 |
| abstract_inverted_index.be | 173 |
| abstract_inverted_index.by | 123 |
| abstract_inverted_index.in | 15, 127, 158 |
| abstract_inverted_index.is | 116 |
| abstract_inverted_index.no | 57 |
| abstract_inverted_index.of | 2, 6, 54, 66, 153 |
| abstract_inverted_index.on | 38, 60 |
| abstract_inverted_index.to | 11, 19, 45, 89, 94, 109, 118, 175 |
| abstract_inverted_index.we | 74 |
| abstract_inverted_index.GDP | 154 |
| abstract_inverted_index.The | 0, 168 |
| abstract_inverted_index.and | 99, 139, 148, 155, 162 |
| abstract_inverted_index.are | 56, 107, 157, 163 |
| abstract_inverted_index.can | 172 |
| abstract_inverted_index.for | 79, 135 |
| abstract_inverted_index.the | 24, 39, 52, 64, 81, 102, 111, 120, 128, 144, 151, 159 |
| abstract_inverted_index.been | 50 |
| abstract_inverted_index.both | 164 |
| abstract_inverted_index.flow | 8, 97 |
| abstract_inverted_index.have | 49 |
| abstract_inverted_index.here | 171 |
| abstract_inverted_index.high | 4 |
| abstract_inverted_index.just | 142 |
| abstract_inverted_index.more | 69 |
| abstract_inverted_index.one. | 167 |
| abstract_inverted_index.same | 160 |
| abstract_inverted_index.test | 119 |
| abstract_inverted_index.that | 150 |
| abstract_inverted_index.them | 55 |
| abstract_inverted_index.then | 100 |
| abstract_inverted_index.this | 47, 72 |
| abstract_inverted_index.used | 108, 117, 174 |
| abstract_inverted_index.with | 29 |
| abstract_inverted_index.zero | 7 |
| abstract_inverted_index.2004, | 136 |
| abstract_inverted_index.2009, | 137 |
| abstract_inverted_index.2014, | 138 |
| abstract_inverted_index.2019. | 140 |
| abstract_inverted_index.based | 59 |
| abstract_inverted_index.dummy | 92 |
| abstract_inverted_index.other | 177 |
| abstract_inverted_index.solve | 176 |
| abstract_inverted_index.their | 125 |
| abstract_inverted_index.trade | 22, 96, 133 |
| abstract_inverted_index.using | 23 |
| abstract_inverted_index.value | 37, 93 |
| abstract_inverted_index.work, | 73 |
| abstract_inverted_index.worth | 165 |
| abstract_inverted_index.zero, | 98 |
| abstract_inverted_index.Linear | 27 |
| abstract_inverted_index.first, | 84 |
| abstract_inverted_index.linear | 32, 61, 86 |
| abstract_inverted_index.longer | 58 |
| abstract_inverted_index.making | 63 |
| abstract_inverted_index.model. | 26 |
| abstract_inverted_index.number | 5 |
| abstract_inverted_index.powers | 152 |
| abstract_inverted_index.trade. | 41 |
| abstract_inverted_index.trades | 9 |
| abstract_inverted_index.Machine | 114 |
| abstract_inverted_index.classic | 145 |
| abstract_inverted_index.cluster | 161 |
| abstract_inverted_index.examine | 143 |
| abstract_inverted_index.explain | 20 |
| abstract_inverted_index.figures | 134 |
| abstract_inverted_index.finding | 67 |
| abstract_inverted_index.gravity | 17, 25, 82, 103, 146 |
| abstract_inverted_index.locally | 88 |
| abstract_inverted_index.optimum | 112 |
| abstract_inverted_index.perform | 85 |
| abstract_inverted_index.problem | 48 |
| abstract_inverted_index.process | 65 |
| abstract_inverted_index.provide | 12 |
| abstract_inverted_index.roughly | 166 |
| abstract_inverted_index.several | 43 |
| abstract_inverted_index.solving | 46 |
| abstract_inverted_index.suggest | 75 |
| abstract_inverted_index.Although | 42 |
| abstract_inverted_index.cluster. | 129 |
| abstract_inverted_index.complex. | 70 |
| abstract_inverted_index.discover | 149 |
| abstract_inverted_index.distance | 156 |
| abstract_inverted_index.equation | 33, 147 |
| abstract_inverted_index.learning | 115 |
| abstract_inverted_index.majority | 53 |
| abstract_inverted_index.position | 126 |
| abstract_inverted_index.presence | 1 |
| abstract_inverted_index.problems | 178 |
| abstract_inverted_index.strategy | 169 |
| abstract_inverted_index.two-step | 77 |
| abstract_inverted_index.Iterative | 105 |
| abstract_inverted_index.analyzing | 124 |
| abstract_inverted_index.challenge | 14 |
| abstract_inverted_index.continues | 10 |
| abstract_inverted_index.determine | 110 |
| abstract_inverted_index.establish | 90 |
| abstract_inverted_index.estimated | 121 |
| abstract_inverted_index.involving | 179 |
| abstract_inverted_index.presented | 170 |
| abstract_inverted_index.proposed, | 51 |
| abstract_inverted_index.solutions | 68 |
| abstract_inverted_index.technique | 78 |
| abstract_inverted_index.approaches | 44 |
| abstract_inverted_index.calculated | 131 |
| abstract_inverted_index.encounters | 34 |
| abstract_inverted_index.estimating | 101 |
| abstract_inverted_index.indefinite | 36 |
| abstract_inverted_index.log-linear | 180 |
| abstract_inverted_index.parameters | 18, 122 |
| abstract_inverted_index.regression | 28, 87 |
| abstract_inverted_index.substitute | 95 |
| abstract_inverted_index.techniques | 106 |
| abstract_inverted_index.determining | 80 |
| abstract_inverted_index.identifying | 16 |
| abstract_inverted_index.logarithmic | 31, 40 |
| abstract_inverted_index.parameters. | 104, 113 |
| abstract_inverted_index.parameters: | 83 |
| abstract_inverted_index.regression, | 62 |
| abstract_inverted_index.regression. | 181 |
| abstract_inverted_index.international | 21, 132 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5065376867 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 1 |
| citation_normalized_percentile |