A New Multiface Target Detection Algorithm for Students in Class Based on Bayesian Optimized YOLOv3 Model Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1155/2022/4260543
Deep learning theory is widely used in face recognition. Combined with the needs of classroom attendance and students’ learning status monitoring, this article analyzes the YOLO (You Only Look Once) face recognition algorithms based on regression method. Aiming at the problem of small target missing detection in the YOLOv3 network structure, an improved YOLOv3 algorithm based on Bayesian optimization is proposed. The algorithm uses deep separable convolution instead of conventional convolution to improve the Darknet-53 basic network, and it reduces the amount of calculation and parameters of the network. A multiscale feature pyramid is built, and an attention guidance module is designed to strengthen multiscale fusion, detecting different sizes of targets. The loss function is improved to solve the imbalance of positive and negative sample distribution and the imbalance between simple samples and difficult samples. The Bayesian function is adopted to optimize the classifier and improve the classification efficiency and accuracy, ensuring the accuracy of small target detection. Five groups of comparative experiments are carried out on public COCO and VOC2012 datasets and self-built datasets. The experimental results show that the proposed improved YOLOv3 model can effectively improve the detection accuracy of multiple faces and small targets. Compared with the traditional YOLOv3 model, the mean mAP of the target is improved by more than 1.2%.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1155/2022/4260543
- https://downloads.hindawi.com/journals/jece/2022/4260543.pdf
- OA Status
- gold
- Cited By
- 11
- References
- 33
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4205386222
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4205386222Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1155/2022/4260543Digital Object Identifier
- Title
-
A New Multiface Target Detection Algorithm for Students in Class Based on Bayesian Optimized YOLOv3 ModelWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-01-04Full publication date if available
- Authors
-
Shi Dong-mei, Hongyu TangList of authors in order
- Landing page
-
https://doi.org/10.1155/2022/4260543Publisher landing page
- PDF URL
-
https://downloads.hindawi.com/journals/jece/2022/4260543.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://downloads.hindawi.com/journals/jece/2022/4260543.pdfDirect OA link when available
- Concepts
-
Computer science, Artificial intelligence, Classifier (UML), Deep learning, Pyramid (geometry), Pattern recognition (psychology), Convolution (computer science), Bayesian probability, Face (sociological concept), Bayesian network, Machine learning, Sample (material), Algorithm, Data mining, Artificial neural network, Mathematics, Chemistry, Sociology, Social science, Geometry, ChromatographyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
11Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 2, 2023: 3, 2022: 5Per-year citation counts (last 5 years)
- References (count)
-
33Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4205386222 |
|---|---|
| doi | https://doi.org/10.1155/2022/4260543 |
| ids.doi | https://doi.org/10.1155/2022/4260543 |
| ids.openalex | https://openalex.org/W4205386222 |
| fwci | 2.15378702 |
| type | article |
| title | A New Multiface Target Detection Algorithm for Students in Class Based on Bayesian Optimized YOLOv3 Model |
| awards[0].id | https://openalex.org/G7128133213 |
| awards[0].funder_id | https://openalex.org/F4320336608 |
| awards[0].display_name | |
| awards[0].funder_award_id | 2020-5 |
| awards[0].funder_display_name | Natural Science Foundation of Jiangsu Province for Distinguished Young Scholars |
| awards[1].id | https://openalex.org/G2260839787 |
| awards[1].funder_id | https://openalex.org/F4320336608 |
| awards[1].display_name | |
| awards[1].funder_award_id | BK20191225 |
| awards[1].funder_display_name | Natural Science Foundation of Jiangsu Province for Distinguished Young Scholars |
| biblio.issue | |
| biblio.volume | 2022 |
| biblio.last_page | 12 |
| biblio.first_page | 1 |
| topics[0].id | https://openalex.org/T14413 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9714000225067139 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Advanced Technologies in Various Fields |
| topics[1].id | https://openalex.org/T10036 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9664999842643738 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Neural Network Applications |
| topics[2].id | https://openalex.org/T11448 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9648000001907349 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Face recognition and analysis |
| funders[0].id | https://openalex.org/F4320336608 |
| funders[0].ror | |
| funders[0].display_name | Natural Science Foundation of Jiangsu Province for Distinguished Young Scholars |
| is_xpac | False |
| apc_list.value | 1400 |
| apc_list.currency | USD |
| apc_list.value_usd | 1400 |
| apc_paid.value | 1400 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1400 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7002454400062561 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6674169898033142 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C95623464 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5651187300682068 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1096149 |
| concepts[2].display_name | Classifier (UML) |
| concepts[3].id | https://openalex.org/C108583219 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5362410545349121 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[3].display_name | Deep learning |
| concepts[4].id | https://openalex.org/C142575187 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5355591177940369 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q3358290 |
| concepts[4].display_name | Pyramid (geometry) |
| concepts[5].id | https://openalex.org/C153180895 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5256427526473999 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[5].display_name | Pattern recognition (psychology) |
| concepts[6].id | https://openalex.org/C45347329 |
| concepts[6].level | 3 |
| concepts[6].score | 0.5200535655021667 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q5166604 |
| concepts[6].display_name | Convolution (computer science) |
| concepts[7].id | https://openalex.org/C107673813 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4864030182361603 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[7].display_name | Bayesian probability |
| concepts[8].id | https://openalex.org/C2779304628 |
| concepts[8].level | 2 |
| concepts[8].score | 0.44402816891670227 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3503480 |
| concepts[8].display_name | Face (sociological concept) |
| concepts[9].id | https://openalex.org/C33724603 |
| concepts[9].level | 2 |
| concepts[9].score | 0.440391480922699 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q812540 |
| concepts[9].display_name | Bayesian network |
| concepts[10].id | https://openalex.org/C119857082 |
| concepts[10].level | 1 |
| concepts[10].score | 0.43777960538864136 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[10].display_name | Machine learning |
| concepts[11].id | https://openalex.org/C198531522 |
| concepts[11].level | 2 |
| concepts[11].score | 0.43637245893478394 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q485146 |
| concepts[11].display_name | Sample (material) |
| concepts[12].id | https://openalex.org/C11413529 |
| concepts[12].level | 1 |
| concepts[12].score | 0.4332399368286133 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[12].display_name | Algorithm |
| concepts[13].id | https://openalex.org/C124101348 |
| concepts[13].level | 1 |
| concepts[13].score | 0.3397655487060547 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[13].display_name | Data mining |
| concepts[14].id | https://openalex.org/C50644808 |
| concepts[14].level | 2 |
| concepts[14].score | 0.338744580745697 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[14].display_name | Artificial neural network |
| concepts[15].id | https://openalex.org/C33923547 |
| concepts[15].level | 0 |
| concepts[15].score | 0.14746665954589844 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[15].display_name | Mathematics |
| concepts[16].id | https://openalex.org/C185592680 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[16].display_name | Chemistry |
| concepts[17].id | https://openalex.org/C144024400 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[17].display_name | Sociology |
| concepts[18].id | https://openalex.org/C36289849 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q34749 |
| concepts[18].display_name | Social science |
| concepts[19].id | https://openalex.org/C2524010 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[19].display_name | Geometry |
| concepts[20].id | https://openalex.org/C43617362 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q170050 |
| concepts[20].display_name | Chromatography |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7002454400062561 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.6674169898033142 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/classifier |
| keywords[2].score | 0.5651187300682068 |
| keywords[2].display_name | Classifier (UML) |
| keywords[3].id | https://openalex.org/keywords/deep-learning |
| keywords[3].score | 0.5362410545349121 |
| keywords[3].display_name | Deep learning |
| keywords[4].id | https://openalex.org/keywords/pyramid |
| keywords[4].score | 0.5355591177940369 |
| keywords[4].display_name | Pyramid (geometry) |
| keywords[5].id | https://openalex.org/keywords/pattern-recognition |
| keywords[5].score | 0.5256427526473999 |
| keywords[5].display_name | Pattern recognition (psychology) |
| keywords[6].id | https://openalex.org/keywords/convolution |
| keywords[6].score | 0.5200535655021667 |
| keywords[6].display_name | Convolution (computer science) |
| keywords[7].id | https://openalex.org/keywords/bayesian-probability |
| keywords[7].score | 0.4864030182361603 |
| keywords[7].display_name | Bayesian probability |
| keywords[8].id | https://openalex.org/keywords/face |
| keywords[8].score | 0.44402816891670227 |
| keywords[8].display_name | Face (sociological concept) |
| keywords[9].id | https://openalex.org/keywords/bayesian-network |
| keywords[9].score | 0.440391480922699 |
| keywords[9].display_name | Bayesian network |
| keywords[10].id | https://openalex.org/keywords/machine-learning |
| keywords[10].score | 0.43777960538864136 |
| keywords[10].display_name | Machine learning |
| keywords[11].id | https://openalex.org/keywords/sample |
| keywords[11].score | 0.43637245893478394 |
| keywords[11].display_name | Sample (material) |
| keywords[12].id | https://openalex.org/keywords/algorithm |
| keywords[12].score | 0.4332399368286133 |
| keywords[12].display_name | Algorithm |
| keywords[13].id | https://openalex.org/keywords/data-mining |
| keywords[13].score | 0.3397655487060547 |
| keywords[13].display_name | Data mining |
| keywords[14].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[14].score | 0.338744580745697 |
| keywords[14].display_name | Artificial neural network |
| keywords[15].id | https://openalex.org/keywords/mathematics |
| keywords[15].score | 0.14746665954589844 |
| keywords[15].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1155/2022/4260543 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S174662166 |
| locations[0].source.issn | 2090-0147, 2090-0155 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2090-0147 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Journal of Electrical and Computer Engineering |
| locations[0].source.host_organization | https://openalex.org/P4310319869 |
| locations[0].source.host_organization_name | Hindawi Publishing Corporation |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319869 |
| locations[0].source.host_organization_lineage_names | Hindawi Publishing Corporation |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://downloads.hindawi.com/journals/jece/2022/4260543.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Electrical and Computer Engineering |
| locations[0].landing_page_url | https://doi.org/10.1155/2022/4260543 |
| locations[1].id | pmh:oai:doaj.org/article:c5d27fbb5978468587831d94f3f99a80 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Journal of Electrical and Computer Engineering, Vol 2022 (2022) |
| locations[1].landing_page_url | https://doaj.org/article/c5d27fbb5978468587831d94f3f99a80 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5103235304 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6595-6765 |
| authorships[0].author.display_name | Shi Dong-mei |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer Science and Technology, Suzhou College of Information Technology, Suzhou, China |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Dongmei Shi |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Computer Science and Technology, Suzhou College of Information Technology, Suzhou, China |
| authorships[1].author.id | https://openalex.org/A5048877619 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2750-0318 |
| authorships[1].author.display_name | Hongyu Tang |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4400573296 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Electrical and Information, Zhenjiang College, Zhenjiang, China |
| authorships[1].institutions[0].id | https://openalex.org/I4400573296 |
| authorships[1].institutions[0].ror | https://ror.org/05yeqc316 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I4400573296 |
| authorships[1].institutions[0].country_code | |
| authorships[1].institutions[0].display_name | Zhenjiang College |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Hongyu Tang |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | School of Electrical and Information, Zhenjiang College, Zhenjiang, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://downloads.hindawi.com/journals/jece/2022/4260543.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A New Multiface Target Detection Algorithm for Students in Class Based on Bayesian Optimized YOLOv3 Model |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T14413 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9714000225067139 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Advanced Technologies in Various Fields |
| related_works | https://openalex.org/W4249847449, https://openalex.org/W44395729, https://openalex.org/W2765338038, https://openalex.org/W1496225612, https://openalex.org/W1523500768, https://openalex.org/W2517629151, https://openalex.org/W1566843515, https://openalex.org/W4292850564, https://openalex.org/W2181660907, https://openalex.org/W4386191828 |
| cited_by_count | 11 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 3 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 5 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1155/2022/4260543 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S174662166 |
| best_oa_location.source.issn | 2090-0147, 2090-0155 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2090-0147 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Journal of Electrical and Computer Engineering |
| best_oa_location.source.host_organization | https://openalex.org/P4310319869 |
| best_oa_location.source.host_organization_name | Hindawi Publishing Corporation |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319869 |
| best_oa_location.source.host_organization_lineage_names | Hindawi Publishing Corporation |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://downloads.hindawi.com/journals/jece/2022/4260543.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Electrical and Computer Engineering |
| best_oa_location.landing_page_url | https://doi.org/10.1155/2022/4260543 |
| primary_location.id | doi:10.1155/2022/4260543 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S174662166 |
| primary_location.source.issn | 2090-0147, 2090-0155 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2090-0147 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Journal of Electrical and Computer Engineering |
| primary_location.source.host_organization | https://openalex.org/P4310319869 |
| primary_location.source.host_organization_name | Hindawi Publishing Corporation |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319869 |
| primary_location.source.host_organization_lineage_names | Hindawi Publishing Corporation |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://downloads.hindawi.com/journals/jece/2022/4260543.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Electrical and Computer Engineering |
| primary_location.landing_page_url | https://doi.org/10.1155/2022/4260543 |
| publication_date | 2022-01-04 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2901096422, https://openalex.org/W3153539222, https://openalex.org/W7061985358, https://openalex.org/W2618530766, https://openalex.org/W3088130809, https://openalex.org/W6981741114, https://openalex.org/W2040719874, https://openalex.org/W2726128874, https://openalex.org/W3194672259, https://openalex.org/W3013262845, https://openalex.org/W3118868152, https://openalex.org/W3177203279, https://openalex.org/W2790186347, https://openalex.org/W2193145675, https://openalex.org/W2963037989, https://openalex.org/W4404183208, https://openalex.org/W2963351448, https://openalex.org/W2978822778, https://openalex.org/W2985083673, https://openalex.org/W3013467123, https://openalex.org/W3121027642, https://openalex.org/W3115103396, https://openalex.org/W3003063065, https://openalex.org/W2981154419, https://openalex.org/W3042293772, https://openalex.org/W3042701997, https://openalex.org/W3194280320, https://openalex.org/W2767111237, https://openalex.org/W2162101338, https://openalex.org/W35937866, https://openalex.org/W2370328524, https://openalex.org/W3106250896, https://openalex.org/W4405489769 |
| referenced_works_count | 33 |
| abstract_inverted_index.A | 89 |
| abstract_inverted_index.an | 51, 96 |
| abstract_inverted_index.at | 38 |
| abstract_inverted_index.by | 211 |
| abstract_inverted_index.in | 6, 46 |
| abstract_inverted_index.is | 3, 59, 93, 100, 114, 138, 209 |
| abstract_inverted_index.it | 78 |
| abstract_inverted_index.of | 13, 41, 68, 82, 86, 109, 120, 154, 160, 191, 206 |
| abstract_inverted_index.on | 34, 56, 166 |
| abstract_inverted_index.to | 71, 102, 116, 140 |
| abstract_inverted_index.The | 61, 111, 135, 175 |
| abstract_inverted_index.and | 16, 77, 84, 95, 122, 126, 132, 144, 149, 169, 172, 194 |
| abstract_inverted_index.are | 163 |
| abstract_inverted_index.can | 185 |
| abstract_inverted_index.mAP | 205 |
| abstract_inverted_index.out | 165 |
| abstract_inverted_index.the | 11, 24, 39, 47, 73, 80, 87, 118, 127, 142, 146, 152, 180, 188, 199, 203, 207 |
| abstract_inverted_index.(You | 26 |
| abstract_inverted_index.COCO | 168 |
| abstract_inverted_index.Deep | 0 |
| abstract_inverted_index.Five | 158 |
| abstract_inverted_index.Look | 28 |
| abstract_inverted_index.Only | 27 |
| abstract_inverted_index.YOLO | 25 |
| abstract_inverted_index.deep | 64 |
| abstract_inverted_index.face | 7, 30 |
| abstract_inverted_index.loss | 112 |
| abstract_inverted_index.mean | 204 |
| abstract_inverted_index.more | 212 |
| abstract_inverted_index.show | 178 |
| abstract_inverted_index.than | 213 |
| abstract_inverted_index.that | 179 |
| abstract_inverted_index.this | 21 |
| abstract_inverted_index.used | 5 |
| abstract_inverted_index.uses | 63 |
| abstract_inverted_index.with | 10, 198 |
| abstract_inverted_index.1.2%. | 214 |
| abstract_inverted_index.Once) | 29 |
| abstract_inverted_index.based | 33, 55 |
| abstract_inverted_index.basic | 75 |
| abstract_inverted_index.faces | 193 |
| abstract_inverted_index.model | 184 |
| abstract_inverted_index.needs | 12 |
| abstract_inverted_index.sizes | 108 |
| abstract_inverted_index.small | 42, 155, 195 |
| abstract_inverted_index.solve | 117 |
| abstract_inverted_index.Aiming | 37 |
| abstract_inverted_index.YOLOv3 | 48, 53, 183, 201 |
| abstract_inverted_index.amount | 81 |
| abstract_inverted_index.built, | 94 |
| abstract_inverted_index.groups | 159 |
| abstract_inverted_index.model, | 202 |
| abstract_inverted_index.module | 99 |
| abstract_inverted_index.public | 167 |
| abstract_inverted_index.sample | 124 |
| abstract_inverted_index.simple | 130 |
| abstract_inverted_index.status | 19 |
| abstract_inverted_index.target | 43, 156, 208 |
| abstract_inverted_index.theory | 2 |
| abstract_inverted_index.widely | 4 |
| abstract_inverted_index.VOC2012 | 170 |
| abstract_inverted_index.adopted | 139 |
| abstract_inverted_index.article | 22 |
| abstract_inverted_index.between | 129 |
| abstract_inverted_index.carried | 164 |
| abstract_inverted_index.feature | 91 |
| abstract_inverted_index.fusion, | 105 |
| abstract_inverted_index.improve | 72, 145, 187 |
| abstract_inverted_index.instead | 67 |
| abstract_inverted_index.method. | 36 |
| abstract_inverted_index.missing | 44 |
| abstract_inverted_index.network | 49 |
| abstract_inverted_index.problem | 40 |
| abstract_inverted_index.pyramid | 92 |
| abstract_inverted_index.reduces | 79 |
| abstract_inverted_index.results | 177 |
| abstract_inverted_index.samples | 131 |
| abstract_inverted_index.Bayesian | 57, 136 |
| abstract_inverted_index.Combined | 9 |
| abstract_inverted_index.Compared | 197 |
| abstract_inverted_index.accuracy | 153, 190 |
| abstract_inverted_index.analyzes | 23 |
| abstract_inverted_index.datasets | 171 |
| abstract_inverted_index.designed | 101 |
| abstract_inverted_index.ensuring | 151 |
| abstract_inverted_index.function | 113, 137 |
| abstract_inverted_index.guidance | 98 |
| abstract_inverted_index.improved | 52, 115, 182, 210 |
| abstract_inverted_index.learning | 1, 18 |
| abstract_inverted_index.multiple | 192 |
| abstract_inverted_index.negative | 123 |
| abstract_inverted_index.network, | 76 |
| abstract_inverted_index.network. | 88 |
| abstract_inverted_index.optimize | 141 |
| abstract_inverted_index.positive | 121 |
| abstract_inverted_index.proposed | 181 |
| abstract_inverted_index.samples. | 134 |
| abstract_inverted_index.targets. | 110, 196 |
| abstract_inverted_index.accuracy, | 150 |
| abstract_inverted_index.algorithm | 54, 62 |
| abstract_inverted_index.attention | 97 |
| abstract_inverted_index.classroom | 14 |
| abstract_inverted_index.datasets. | 174 |
| abstract_inverted_index.detecting | 106 |
| abstract_inverted_index.detection | 45, 189 |
| abstract_inverted_index.different | 107 |
| abstract_inverted_index.difficult | 133 |
| abstract_inverted_index.imbalance | 119, 128 |
| abstract_inverted_index.proposed. | 60 |
| abstract_inverted_index.separable | 65 |
| abstract_inverted_index.Darknet-53 | 74 |
| abstract_inverted_index.algorithms | 32 |
| abstract_inverted_index.attendance | 15 |
| abstract_inverted_index.classifier | 143 |
| abstract_inverted_index.detection. | 157 |
| abstract_inverted_index.efficiency | 148 |
| abstract_inverted_index.multiscale | 90, 104 |
| abstract_inverted_index.parameters | 85 |
| abstract_inverted_index.regression | 35 |
| abstract_inverted_index.self-built | 173 |
| abstract_inverted_index.strengthen | 103 |
| abstract_inverted_index.structure, | 50 |
| abstract_inverted_index.calculation | 83 |
| abstract_inverted_index.comparative | 161 |
| abstract_inverted_index.convolution | 66, 70 |
| abstract_inverted_index.effectively | 186 |
| abstract_inverted_index.experiments | 162 |
| abstract_inverted_index.monitoring, | 20 |
| abstract_inverted_index.recognition | 31 |
| abstract_inverted_index.students’ | 17 |
| abstract_inverted_index.traditional | 200 |
| abstract_inverted_index.conventional | 69 |
| abstract_inverted_index.distribution | 125 |
| abstract_inverted_index.experimental | 176 |
| abstract_inverted_index.optimization | 58 |
| abstract_inverted_index.recognition. | 8 |
| abstract_inverted_index.classification | 147 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 91 |
| corresponding_author_ids | https://openalex.org/A5048877619 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| corresponding_institution_ids | https://openalex.org/I4400573296 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.7799999713897705 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile.value | 0.85348518 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |