A New Multiple Imputation Approach Using Machine Learning to Enhance Climate Databases in Senegal Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.21203/rs.3.rs-3287168/v1
This study aims at enhancing climate data in Senegal using information from the Global Surface Summary of the Day (GSOD). It uses data from 1991 to 2022 from major secondary synoptic stations in Senegal. These data are subject to missing values (data gaps). To address these gaps, multiple imputation was used based on three machine learning models: PMM (Predictive Mean Matching), RF (Random Forest), and NORM (Bayesian Linear Regression). The PMM model relies on averages of similar data, the RF model handles complex relationships between variables, even on an intra-seasonal scale, while the NORM model captures seasonal variations and extreme values. The results highlight the higher performance of the RF model in terms of accuracy and variance explanation compared to the others. The findings of this study open new avenues for informed decision-making in sectors such as agriculture and urban planning, where accurate climate data play a crucial role. However, while this study lays the groundwork for better utilization of climate data in Senegal, challenges persist, including the ongoing need to collect high-quality data and adapt models to data intricacies.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.21203/rs.3.rs-3287168/v1
- https://www.researchsquare.com/article/rs-3287168/latest.pdf
- OA Status
- green
- References
- 64
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4386253445
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4386253445Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.21203/rs.3.rs-3287168/v1Digital Object Identifier
- Title
-
A New Multiple Imputation Approach Using Machine Learning to Enhance Climate Databases in SenegalWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-08-29Full publication date if available
- Authors
-
Mory Touré, Nana Ama Browne Klutse, Mamadou Adama Sarr, Annine Duclaire Kenne, Md Abul Ehsan Bhuiyanr, Ousmane Ndiaye, Daouda Badiane, Wassila M. Thiaw, Ibrahima Sy, Cheikh Mbow, Saïdou Moustapha Sall, Amadou GayeList of authors in order
- Landing page
-
https://doi.org/10.21203/rs.3.rs-3287168/v1Publisher landing page
- PDF URL
-
https://www.researchsquare.com/article/rs-3287168/latest.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.researchsquare.com/article/rs-3287168/latest.pdfDirect OA link when available
- Concepts
-
Imputation (statistics), Random forest, Missing data, Computer science, Data quality, Bayesian probability, Variance (accounting), Machine learning, Artificial intelligence, Engineering, Metric (unit), Operations management, Accounting, BusinessTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
64Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4386253445 |
|---|---|
| doi | https://doi.org/10.21203/rs.3.rs-3287168/v1 |
| ids.doi | https://doi.org/10.21203/rs.3.rs-3287168/v1 |
| ids.openalex | https://openalex.org/W4386253445 |
| fwci | 0.0 |
| type | preprint |
| title | A New Multiple Imputation Approach Using Machine Learning to Enhance Climate Databases in Senegal |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10111 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9958000183105469 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2303 |
| topics[0].subfield.display_name | Ecology |
| topics[0].display_name | Remote Sensing in Agriculture |
| topics[1].id | https://openalex.org/T10029 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9908000230789185 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2306 |
| topics[1].subfield.display_name | Global and Planetary Change |
| topics[1].display_name | Climate variability and models |
| topics[2].id | https://openalex.org/T10766 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.9829999804496765 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2305 |
| topics[2].subfield.display_name | Environmental Engineering |
| topics[2].display_name | Urban Heat Island Mitigation |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C58041806 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7125270366668701 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1660484 |
| concepts[0].display_name | Imputation (statistics) |
| concepts[1].id | https://openalex.org/C169258074 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6822829246520996 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q245748 |
| concepts[1].display_name | Random forest |
| concepts[2].id | https://openalex.org/C9357733 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6087478399276733 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q6878417 |
| concepts[2].display_name | Missing data |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.530779242515564 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C24756922 |
| concepts[4].level | 3 |
| concepts[4].score | 0.4666810929775238 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1757694 |
| concepts[4].display_name | Data quality |
| concepts[5].id | https://openalex.org/C107673813 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4539671540260315 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[5].display_name | Bayesian probability |
| concepts[6].id | https://openalex.org/C196083921 |
| concepts[6].level | 2 |
| concepts[6].score | 0.441104918718338 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7915758 |
| concepts[6].display_name | Variance (accounting) |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.30441775918006897 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.2599879801273346 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| concepts[9].id | https://openalex.org/C127413603 |
| concepts[9].level | 0 |
| concepts[9].score | 0.11231455206871033 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[9].display_name | Engineering |
| concepts[10].id | https://openalex.org/C176217482 |
| concepts[10].level | 2 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q860554 |
| concepts[10].display_name | Metric (unit) |
| concepts[11].id | https://openalex.org/C21547014 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1423657 |
| concepts[11].display_name | Operations management |
| concepts[12].id | https://openalex.org/C121955636 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q4116214 |
| concepts[12].display_name | Accounting |
| concepts[13].id | https://openalex.org/C144133560 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[13].display_name | Business |
| keywords[0].id | https://openalex.org/keywords/imputation |
| keywords[0].score | 0.7125270366668701 |
| keywords[0].display_name | Imputation (statistics) |
| keywords[1].id | https://openalex.org/keywords/random-forest |
| keywords[1].score | 0.6822829246520996 |
| keywords[1].display_name | Random forest |
| keywords[2].id | https://openalex.org/keywords/missing-data |
| keywords[2].score | 0.6087478399276733 |
| keywords[2].display_name | Missing data |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.530779242515564 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/data-quality |
| keywords[4].score | 0.4666810929775238 |
| keywords[4].display_name | Data quality |
| keywords[5].id | https://openalex.org/keywords/bayesian-probability |
| keywords[5].score | 0.4539671540260315 |
| keywords[5].display_name | Bayesian probability |
| keywords[6].id | https://openalex.org/keywords/variance |
| keywords[6].score | 0.441104918718338 |
| keywords[6].display_name | Variance (accounting) |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.30441775918006897 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.2599879801273346 |
| keywords[8].display_name | Artificial intelligence |
| keywords[9].id | https://openalex.org/keywords/engineering |
| keywords[9].score | 0.11231455206871033 |
| keywords[9].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.21203/rs.3.rs-3287168/v1 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402450 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Research Square (Research Square) |
| locations[0].source.host_organization | https://openalex.org/I4210096694 |
| locations[0].source.host_organization_name | Research Square (United States) |
| locations[0].source.host_organization_lineage | https://openalex.org/I4210096694 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.researchsquare.com/article/rs-3287168/latest.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.21203/rs.3.rs-3287168/v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5059617681 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6432-2920 |
| authorships[0].author.display_name | Mory Touré |
| authorships[0].countries | SN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210132209 |
| authorships[0].affiliations[0].raw_affiliation_string | Agence Nationale de l'Aviation Civile et de la Météorologie |
| authorships[0].institutions[0].id | https://openalex.org/I4210132209 |
| authorships[0].institutions[0].ror | https://ror.org/03fh39287 |
| authorships[0].institutions[0].type | government |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210132209 |
| authorships[0].institutions[0].country_code | SN |
| authorships[0].institutions[0].display_name | Agence Nationale de l'Aviation Civile et de la Météorologie |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Mory Toure |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Agence Nationale de l'Aviation Civile et de la Météorologie |
| authorships[1].author.id | https://openalex.org/A5082443122 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5156-2765 |
| authorships[1].author.display_name | Nana Ama Browne Klutse |
| authorships[1].countries | GH, RW |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210112059 |
| authorships[1].affiliations[0].raw_affiliation_string | African Institute for Mathematical Sciences (AIMS), Kigali, Rwanda |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I138690464 |
| authorships[1].affiliations[1].raw_affiliation_string | University of Ghana, Accra, Ghana |
| authorships[1].institutions[0].id | https://openalex.org/I138690464 |
| authorships[1].institutions[0].ror | https://ror.org/01r22mr83 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I138690464 |
| authorships[1].institutions[0].country_code | GH |
| authorships[1].institutions[0].display_name | University of Ghana |
| authorships[1].institutions[1].id | https://openalex.org/I4210112059 |
| authorships[1].institutions[1].ror | https://ror.org/02w32z542 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I4210112059 |
| authorships[1].institutions[1].country_code | RW |
| authorships[1].institutions[1].display_name | African Institute for Mathematical Sciences |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Nana Ama Browne Klutse |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | African Institute for Mathematical Sciences (AIMS), Kigali, Rwanda, University of Ghana, Accra, Ghana |
| authorships[2].author.id | https://openalex.org/A5037898530 |
| authorships[2].author.orcid | https://orcid.org/0009-0001-8140-9734 |
| authorships[2].author.display_name | Mamadou Adama Sarr |
| authorships[2].countries | AT, SN, US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I121883995, https://openalex.org/I1308126019 |
| authorships[2].affiliations[0].raw_affiliation_string | Johannes Kepler University of Linz Md Abul Ehsan Bhuiyanr Climate Prediction Center, National Oceanic & Atmospheric Administration (NOAA) |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I96840727 |
| authorships[2].affiliations[1].raw_affiliation_string | Anta Diop University |
| authorships[2].affiliations[2].institution_ids | https://openalex.org/I112713213 |
| authorships[2].affiliations[2].raw_affiliation_string | Université Gaston Berger |
| authorships[2].institutions[0].id | https://openalex.org/I121883995 |
| authorships[2].institutions[0].ror | https://ror.org/052r2xn60 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I121883995 |
| authorships[2].institutions[0].country_code | AT |
| authorships[2].institutions[0].display_name | Johannes Kepler University of Linz |
| authorships[2].institutions[1].id | https://openalex.org/I96840727 |
| authorships[2].institutions[1].ror | https://ror.org/04je6yw13 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I96840727 |
| authorships[2].institutions[1].country_code | SN |
| authorships[2].institutions[1].display_name | Cheikh Anta Diop University |
| authorships[2].institutions[2].id | https://openalex.org/I112713213 |
| authorships[2].institutions[2].ror | https://ror.org/01jp0tk64 |
| authorships[2].institutions[2].type | education |
| authorships[2].institutions[2].lineage | https://openalex.org/I112713213 |
| authorships[2].institutions[2].country_code | SN |
| authorships[2].institutions[2].display_name | Université Gaston Berger |
| authorships[2].institutions[3].id | https://openalex.org/I1308126019 |
| authorships[2].institutions[3].ror | https://ror.org/02z5nhe81 |
| authorships[2].institutions[3].type | government |
| authorships[2].institutions[3].lineage | https://openalex.org/I1308126019, https://openalex.org/I1343035065 |
| authorships[2].institutions[3].country_code | US |
| authorships[2].institutions[3].display_name | National Oceanic and Atmospheric Administration |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Mamadou Adama Sarr |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Anta Diop University, Johannes Kepler University of Linz Md Abul Ehsan Bhuiyanr Climate Prediction Center, National Oceanic & Atmospheric Administration (NOAA), Université Gaston Berger |
| authorships[3].author.id | https://openalex.org/A5092816202 |
| authorships[3].author.orcid | https://orcid.org/0009-0008-2736-3078 |
| authorships[3].author.display_name | Annine Duclaire Kenne |
| authorships[3].countries | AT, SN, US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I96840727 |
| authorships[3].affiliations[0].raw_affiliation_string | Anta Diop University |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I121883995, https://openalex.org/I1308126019 |
| authorships[3].affiliations[1].raw_affiliation_string | Johannes Kepler University of Linz Md Abul Ehsan Bhuiyanr Climate Prediction Center, National Oceanic & Atmospheric Administration (NOAA) |
| authorships[3].institutions[0].id | https://openalex.org/I121883995 |
| authorships[3].institutions[0].ror | https://ror.org/052r2xn60 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I121883995 |
| authorships[3].institutions[0].country_code | AT |
| authorships[3].institutions[0].display_name | Johannes Kepler University of Linz |
| authorships[3].institutions[1].id | https://openalex.org/I96840727 |
| authorships[3].institutions[1].ror | https://ror.org/04je6yw13 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I96840727 |
| authorships[3].institutions[1].country_code | SN |
| authorships[3].institutions[1].display_name | Cheikh Anta Diop University |
| authorships[3].institutions[2].id | https://openalex.org/I1308126019 |
| authorships[3].institutions[2].ror | https://ror.org/02z5nhe81 |
| authorships[3].institutions[2].type | government |
| authorships[3].institutions[2].lineage | https://openalex.org/I1308126019, https://openalex.org/I1343035065 |
| authorships[3].institutions[2].country_code | US |
| authorships[3].institutions[2].display_name | National Oceanic and Atmospheric Administration |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Annine Duclaire Kenne |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Anta Diop University, Johannes Kepler University of Linz Md Abul Ehsan Bhuiyanr Climate Prediction Center, National Oceanic & Atmospheric Administration (NOAA) |
| authorships[4].author.id | https://openalex.org/A5092816203 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Md Abul Ehsan Bhuiyanr |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I1308126019 |
| authorships[4].affiliations[0].raw_affiliation_string | Climate Prediction Center, National Oceanic & Atmospheric Administration (NOAA) |
| authorships[4].institutions[0].id | https://openalex.org/I1308126019 |
| authorships[4].institutions[0].ror | https://ror.org/02z5nhe81 |
| authorships[4].institutions[0].type | government |
| authorships[4].institutions[0].lineage | https://openalex.org/I1308126019, https://openalex.org/I1343035065 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | National Oceanic and Atmospheric Administration |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Md Abul Ehsan Bhuiyanr |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Climate Prediction Center, National Oceanic & Atmospheric Administration (NOAA) |
| authorships[5].author.id | https://openalex.org/A5101553063 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-5048-4731 |
| authorships[5].author.display_name | Ousmane Ndiaye |
| authorships[5].countries | SN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210132209 |
| authorships[5].affiliations[0].raw_affiliation_string | Agence Nationale de l'Aviation Civile et de la Météorologie |
| authorships[5].institutions[0].id | https://openalex.org/I4210132209 |
| authorships[5].institutions[0].ror | https://ror.org/03fh39287 |
| authorships[5].institutions[0].type | government |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210132209 |
| authorships[5].institutions[0].country_code | SN |
| authorships[5].institutions[0].display_name | Agence Nationale de l'Aviation Civile et de la Météorologie |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Ousmane Ndiaye |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Agence Nationale de l'Aviation Civile et de la Météorologie |
| authorships[6].author.id | https://openalex.org/A5014245347 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-2350-6544 |
| authorships[6].author.display_name | Daouda Badiane |
| authorships[6].countries | SN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I96840727 |
| authorships[6].affiliations[0].raw_affiliation_string | Cheikh Anta Diop University |
| authorships[6].institutions[0].id | https://openalex.org/I96840727 |
| authorships[6].institutions[0].ror | https://ror.org/04je6yw13 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I96840727 |
| authorships[6].institutions[0].country_code | SN |
| authorships[6].institutions[0].display_name | Cheikh Anta Diop University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Daouda Badiane |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Cheikh Anta Diop University |
| authorships[7].author.id | https://openalex.org/A5051473434 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Wassila M. Thiaw |
| authorships[7].countries | US |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I1308126019 |
| authorships[7].affiliations[0].raw_affiliation_string | Climate Prediction Center, National Oceanic & Atmospheric Administration (NOAA), College Park, United States of America |
| authorships[7].institutions[0].id | https://openalex.org/I1308126019 |
| authorships[7].institutions[0].ror | https://ror.org/02z5nhe81 |
| authorships[7].institutions[0].type | government |
| authorships[7].institutions[0].lineage | https://openalex.org/I1308126019, https://openalex.org/I1343035065 |
| authorships[7].institutions[0].country_code | US |
| authorships[7].institutions[0].display_name | National Oceanic and Atmospheric Administration |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Wassila Mamadou Thiaw |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Climate Prediction Center, National Oceanic & Atmospheric Administration (NOAA), College Park, United States of America |
| authorships[8].author.id | https://openalex.org/A5049730929 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-3266-1001 |
| authorships[8].author.display_name | Ibrahima Sy |
| authorships[8].countries | SN |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I4210162260 |
| authorships[8].affiliations[0].raw_affiliation_string | Centre de Suivi Ecologique (CSE), Dakar, Senegal |
| authorships[8].affiliations[1].institution_ids | https://openalex.org/I96840727 |
| authorships[8].affiliations[1].raw_affiliation_string | Cheikh Anta Diop University |
| authorships[8].institutions[0].id | https://openalex.org/I4210162260 |
| authorships[8].institutions[0].ror | https://ror.org/04kxs9506 |
| authorships[8].institutions[0].type | other |
| authorships[8].institutions[0].lineage | https://openalex.org/I4210162260 |
| authorships[8].institutions[0].country_code | SN |
| authorships[8].institutions[0].display_name | Centre de Suivi Ecologique |
| authorships[8].institutions[1].id | https://openalex.org/I96840727 |
| authorships[8].institutions[1].ror | https://ror.org/04je6yw13 |
| authorships[8].institutions[1].type | education |
| authorships[8].institutions[1].lineage | https://openalex.org/I96840727 |
| authorships[8].institutions[1].country_code | SN |
| authorships[8].institutions[1].display_name | Cheikh Anta Diop University |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Ibrahima Sy |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Centre de Suivi Ecologique (CSE), Dakar, Senegal, Cheikh Anta Diop University |
| authorships[9].author.id | https://openalex.org/A5031996459 |
| authorships[9].author.orcid | https://orcid.org/0000-0003-4620-4490 |
| authorships[9].author.display_name | Cheikh Mbow |
| authorships[9].countries | SN |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I4210162260 |
| authorships[9].affiliations[0].raw_affiliation_string | Centre de Suivi Ecologique (CSE), Dakar, Senegal |
| authorships[9].institutions[0].id | https://openalex.org/I4210162260 |
| authorships[9].institutions[0].ror | https://ror.org/04kxs9506 |
| authorships[9].institutions[0].type | other |
| authorships[9].institutions[0].lineage | https://openalex.org/I4210162260 |
| authorships[9].institutions[0].country_code | SN |
| authorships[9].institutions[0].display_name | Centre de Suivi Ecologique |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Cheikh Mbow |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | Centre de Suivi Ecologique (CSE), Dakar, Senegal |
| authorships[10].author.id | https://openalex.org/A5111901868 |
| authorships[10].author.orcid | |
| authorships[10].author.display_name | Saïdou Moustapha Sall |
| authorships[10].countries | AT, SN, US |
| authorships[10].affiliations[0].institution_ids | https://openalex.org/I121883995, https://openalex.org/I1308126019 |
| authorships[10].affiliations[0].raw_affiliation_string | Johannes Kepler University of Linz Md Abul Ehsan Bhuiyanr Climate Prediction Center, National Oceanic & Atmospheric Administration (NOAA) |
| authorships[10].affiliations[1].institution_ids | https://openalex.org/I96840727 |
| authorships[10].affiliations[1].raw_affiliation_string | Cheikh Anta Diop University |
| authorships[10].institutions[0].id | https://openalex.org/I121883995 |
| authorships[10].institutions[0].ror | https://ror.org/052r2xn60 |
| authorships[10].institutions[0].type | education |
| authorships[10].institutions[0].lineage | https://openalex.org/I121883995 |
| authorships[10].institutions[0].country_code | AT |
| authorships[10].institutions[0].display_name | Johannes Kepler University of Linz |
| authorships[10].institutions[1].id | https://openalex.org/I96840727 |
| authorships[10].institutions[1].ror | https://ror.org/04je6yw13 |
| authorships[10].institutions[1].type | education |
| authorships[10].institutions[1].lineage | https://openalex.org/I96840727 |
| authorships[10].institutions[1].country_code | SN |
| authorships[10].institutions[1].display_name | Cheikh Anta Diop University |
| authorships[10].institutions[2].id | https://openalex.org/I1308126019 |
| authorships[10].institutions[2].ror | https://ror.org/02z5nhe81 |
| authorships[10].institutions[2].type | government |
| authorships[10].institutions[2].lineage | https://openalex.org/I1308126019, https://openalex.org/I1343035065 |
| authorships[10].institutions[2].country_code | US |
| authorships[10].institutions[2].display_name | National Oceanic and Atmospheric Administration |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Saïdou Moustapha Sall |
| authorships[10].is_corresponding | False |
| authorships[10].raw_affiliation_strings | Cheikh Anta Diop University, Johannes Kepler University of Linz Md Abul Ehsan Bhuiyanr Climate Prediction Center, National Oceanic & Atmospheric Administration (NOAA) |
| authorships[11].author.id | https://openalex.org/A5059384346 |
| authorships[11].author.orcid | https://orcid.org/0000-0002-1180-2792 |
| authorships[11].author.display_name | Amadou Gaye |
| authorships[11].countries | AT, SN, US |
| authorships[11].affiliations[0].institution_ids | https://openalex.org/I96840727 |
| authorships[11].affiliations[0].raw_affiliation_string | Cheikh Anta Diop University |
| authorships[11].affiliations[1].institution_ids | https://openalex.org/I121883995, https://openalex.org/I1308126019 |
| authorships[11].affiliations[1].raw_affiliation_string | Johannes Kepler University of Linz Md Abul Ehsan Bhuiyanr Climate Prediction Center, National Oceanic & Atmospheric Administration (NOAA) |
| authorships[11].institutions[0].id | https://openalex.org/I121883995 |
| authorships[11].institutions[0].ror | https://ror.org/052r2xn60 |
| authorships[11].institutions[0].type | education |
| authorships[11].institutions[0].lineage | https://openalex.org/I121883995 |
| authorships[11].institutions[0].country_code | AT |
| authorships[11].institutions[0].display_name | Johannes Kepler University of Linz |
| authorships[11].institutions[1].id | https://openalex.org/I96840727 |
| authorships[11].institutions[1].ror | https://ror.org/04je6yw13 |
| authorships[11].institutions[1].type | education |
| authorships[11].institutions[1].lineage | https://openalex.org/I96840727 |
| authorships[11].institutions[1].country_code | SN |
| authorships[11].institutions[1].display_name | Cheikh Anta Diop University |
| authorships[11].institutions[2].id | https://openalex.org/I1308126019 |
| authorships[11].institutions[2].ror | https://ror.org/02z5nhe81 |
| authorships[11].institutions[2].type | government |
| authorships[11].institutions[2].lineage | https://openalex.org/I1308126019, https://openalex.org/I1343035065 |
| authorships[11].institutions[2].country_code | US |
| authorships[11].institutions[2].display_name | National Oceanic and Atmospheric Administration |
| authorships[11].author_position | last |
| authorships[11].raw_author_name | Amadou Thierno Gaye |
| authorships[11].is_corresponding | False |
| authorships[11].raw_affiliation_strings | Cheikh Anta Diop University, Johannes Kepler University of Linz Md Abul Ehsan Bhuiyanr Climate Prediction Center, National Oceanic & Atmospheric Administration (NOAA) |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.researchsquare.com/article/rs-3287168/latest.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A New Multiple Imputation Approach Using Machine Learning to Enhance Climate Databases in Senegal |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10111 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9958000183105469 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2303 |
| primary_topic.subfield.display_name | Ecology |
| primary_topic.display_name | Remote Sensing in Agriculture |
| related_works | https://openalex.org/W2096555119, https://openalex.org/W3150051843, https://openalex.org/W2943291682, https://openalex.org/W4327738133, https://openalex.org/W2581082906, https://openalex.org/W2949906402, https://openalex.org/W4226239514, https://openalex.org/W2146271290, https://openalex.org/W2966164894, https://openalex.org/W2391802805 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.21203/rs.3.rs-3287168/v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402450 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Research Square (Research Square) |
| best_oa_location.source.host_organization | https://openalex.org/I4210096694 |
| best_oa_location.source.host_organization_name | Research Square (United States) |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I4210096694 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.researchsquare.com/article/rs-3287168/latest.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-3287168/v1 |
| primary_location.id | doi:10.21203/rs.3.rs-3287168/v1 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402450 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Research Square (Research Square) |
| primary_location.source.host_organization | https://openalex.org/I4210096694 |
| primary_location.source.host_organization_name | Research Square (United States) |
| primary_location.source.host_organization_lineage | https://openalex.org/I4210096694 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.researchsquare.com/article/rs-3287168/latest.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-3287168/v1 |
| publication_date | 2023-08-29 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W3116512390, https://openalex.org/W1919216911, https://openalex.org/W3091610863, https://openalex.org/W2261059368, https://openalex.org/W1533634678, https://openalex.org/W3215437998, https://openalex.org/W2809317444, https://openalex.org/W2096391232, https://openalex.org/W2115098571, https://openalex.org/W2020469756, https://openalex.org/W2143779397, https://openalex.org/W3004750436, https://openalex.org/W4385555699, https://openalex.org/W2987028840, https://openalex.org/W2775701527, https://openalex.org/W2954168252, https://openalex.org/W3162678735, https://openalex.org/W2750735368, https://openalex.org/W2090688102, https://openalex.org/W4311192298, https://openalex.org/W2168862366, https://openalex.org/W2057119701, https://openalex.org/W1581663723, https://openalex.org/W6640462745, https://openalex.org/W2955443275, https://openalex.org/W3195694313, https://openalex.org/W78449534, https://openalex.org/W2606442136, https://openalex.org/W2168985433, https://openalex.org/W2154074878, https://openalex.org/W3214476217, https://openalex.org/W2255147964, https://openalex.org/W3092375231, https://openalex.org/W2560727847, https://openalex.org/W3173271464, https://openalex.org/W2058854776, https://openalex.org/W2941816951, https://openalex.org/W2754317187, https://openalex.org/W2122945202, https://openalex.org/W2086412406, https://openalex.org/W4384408349, https://openalex.org/W6768971453, https://openalex.org/W4229442782, https://openalex.org/W3154863786, https://openalex.org/W1978161766, https://openalex.org/W2031668066, https://openalex.org/W2174160981, https://openalex.org/W4377565282, https://openalex.org/W4206604443, https://openalex.org/W1997894578, https://openalex.org/W2938205880, https://openalex.org/W2949495270, https://openalex.org/W2944755434, https://openalex.org/W2134843796, https://openalex.org/W2000538412, https://openalex.org/W2073064546, https://openalex.org/W2637477912, https://openalex.org/W3160154289, https://openalex.org/W2509876630, https://openalex.org/W3035289617, https://openalex.org/W3135094168, https://openalex.org/W4225774531, https://openalex.org/W2300843834, https://openalex.org/W3101424466 |
| referenced_works_count | 64 |
| abstract_inverted_index.a | 147 |
| abstract_inverted_index.It | 21 |
| abstract_inverted_index.RF | 62, 80, 110 |
| abstract_inverted_index.To | 44 |
| abstract_inverted_index.an | 89 |
| abstract_inverted_index.as | 137 |
| abstract_inverted_index.at | 4 |
| abstract_inverted_index.in | 8, 33, 112, 134, 163 |
| abstract_inverted_index.of | 17, 76, 108, 114, 125, 160 |
| abstract_inverted_index.on | 53, 74, 88 |
| abstract_inverted_index.to | 26, 39, 120, 171, 178 |
| abstract_inverted_index.Day | 19 |
| abstract_inverted_index.PMM | 58, 71 |
| abstract_inverted_index.The | 70, 102, 123 |
| abstract_inverted_index.and | 65, 99, 116, 139, 175 |
| abstract_inverted_index.are | 37 |
| abstract_inverted_index.for | 131, 157 |
| abstract_inverted_index.new | 129 |
| abstract_inverted_index.the | 13, 18, 79, 93, 105, 109, 121, 155, 168 |
| abstract_inverted_index.was | 50 |
| abstract_inverted_index.1991 | 25 |
| abstract_inverted_index.2022 | 27 |
| abstract_inverted_index.Mean | 60 |
| abstract_inverted_index.NORM | 66, 94 |
| abstract_inverted_index.This | 1 |
| abstract_inverted_index.aims | 3 |
| abstract_inverted_index.data | 7, 23, 36, 145, 162, 174, 179 |
| abstract_inverted_index.even | 87 |
| abstract_inverted_index.from | 12, 24, 28 |
| abstract_inverted_index.lays | 154 |
| abstract_inverted_index.need | 170 |
| abstract_inverted_index.open | 128 |
| abstract_inverted_index.play | 146 |
| abstract_inverted_index.such | 136 |
| abstract_inverted_index.this | 126, 152 |
| abstract_inverted_index.used | 51 |
| abstract_inverted_index.uses | 22 |
| abstract_inverted_index.(data | 42 |
| abstract_inverted_index.These | 35 |
| abstract_inverted_index.adapt | 176 |
| abstract_inverted_index.based | 52 |
| abstract_inverted_index.data, | 78 |
| abstract_inverted_index.gaps, | 47 |
| abstract_inverted_index.major | 29 |
| abstract_inverted_index.model | 72, 81, 95, 111 |
| abstract_inverted_index.role. | 149 |
| abstract_inverted_index.study | 2, 127, 153 |
| abstract_inverted_index.terms | 113 |
| abstract_inverted_index.these | 46 |
| abstract_inverted_index.three | 54 |
| abstract_inverted_index.urban | 140 |
| abstract_inverted_index.using | 10 |
| abstract_inverted_index.where | 142 |
| abstract_inverted_index.while | 92, 151 |
| abstract_inverted_index.Global | 14 |
| abstract_inverted_index.Linear | 68 |
| abstract_inverted_index.better | 158 |
| abstract_inverted_index.gaps). | 43 |
| abstract_inverted_index.higher | 106 |
| abstract_inverted_index.models | 177 |
| abstract_inverted_index.relies | 73 |
| abstract_inverted_index.scale, | 91 |
| abstract_inverted_index.values | 41 |
| abstract_inverted_index.(GSOD). | 20 |
| abstract_inverted_index.(Random | 63 |
| abstract_inverted_index.Senegal | 9 |
| abstract_inverted_index.Summary | 16 |
| abstract_inverted_index.Surface | 15 |
| abstract_inverted_index.address | 45 |
| abstract_inverted_index.avenues | 130 |
| abstract_inverted_index.between | 85 |
| abstract_inverted_index.climate | 6, 144, 161 |
| abstract_inverted_index.collect | 172 |
| abstract_inverted_index.complex | 83 |
| abstract_inverted_index.crucial | 148 |
| abstract_inverted_index.extreme | 100 |
| abstract_inverted_index.handles | 82 |
| abstract_inverted_index.machine | 55 |
| abstract_inverted_index.missing | 40 |
| abstract_inverted_index.models: | 57 |
| abstract_inverted_index.ongoing | 169 |
| abstract_inverted_index.others. | 122 |
| abstract_inverted_index.results | 103 |
| abstract_inverted_index.sectors | 135 |
| abstract_inverted_index.similar | 77 |
| abstract_inverted_index.subject | 38 |
| abstract_inverted_index.values. | 101 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Forest), | 64 |
| abstract_inverted_index.However, | 150 |
| abstract_inverted_index.Senegal, | 164 |
| abstract_inverted_index.Senegal. | 34 |
| abstract_inverted_index.accuracy | 115 |
| abstract_inverted_index.accurate | 143 |
| abstract_inverted_index.averages | 75 |
| abstract_inverted_index.captures | 96 |
| abstract_inverted_index.compared | 119 |
| abstract_inverted_index.findings | 124 |
| abstract_inverted_index.informed | 132 |
| abstract_inverted_index.learning | 56 |
| abstract_inverted_index.multiple | 48 |
| abstract_inverted_index.persist, | 166 |
| abstract_inverted_index.seasonal | 97 |
| abstract_inverted_index.stations | 32 |
| abstract_inverted_index.synoptic | 31 |
| abstract_inverted_index.variance | 117 |
| abstract_inverted_index.(Bayesian | 67 |
| abstract_inverted_index.enhancing | 5 |
| abstract_inverted_index.highlight | 104 |
| abstract_inverted_index.including | 167 |
| abstract_inverted_index.planning, | 141 |
| abstract_inverted_index.secondary | 30 |
| abstract_inverted_index.Matching), | 61 |
| abstract_inverted_index.challenges | 165 |
| abstract_inverted_index.groundwork | 156 |
| abstract_inverted_index.imputation | 49 |
| abstract_inverted_index.variables, | 86 |
| abstract_inverted_index.variations | 98 |
| abstract_inverted_index.(Predictive | 59 |
| abstract_inverted_index.agriculture | 138 |
| abstract_inverted_index.explanation | 118 |
| abstract_inverted_index.information | 11 |
| abstract_inverted_index.performance | 107 |
| abstract_inverted_index.utilization | 159 |
| abstract_inverted_index.Regression). | 69 |
| abstract_inverted_index.high-quality | 173 |
| abstract_inverted_index.intricacies. | 180 |
| abstract_inverted_index.relationships | 84 |
| abstract_inverted_index.intra-seasonal | 90 |
| abstract_inverted_index.decision-making | 133 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5059617681 |
| countries_distinct_count | 5 |
| institutions_distinct_count | 12 |
| corresponding_institution_ids | https://openalex.org/I4210132209 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/13 |
| sustainable_development_goals[0].score | 0.7099999785423279 |
| sustainable_development_goals[0].display_name | Climate action |
| citation_normalized_percentile.value | 0.13540282 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |