A New Paradigm for Generative Adversarial Networks based on Randomized Decision Rules Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2306.13641
The Generative Adversarial Network (GAN) was recently introduced in the literature as a novel machine learning method for training generative models. It has many applications in statistics such as nonparametric clustering and nonparametric conditional independence tests. However, training the GAN is notoriously difficult due to the issue of mode collapse, which refers to the lack of diversity among generated data. In this paper, we identify the reasons why the GAN suffers from this issue, and to address it, we propose a new formulation for the GAN based on randomized decision rules. In the new formulation, the discriminator converges to a fixed point while the generator converges to a distribution at the Nash equilibrium. We propose to train the GAN by an empirical Bayes-like method by treating the discriminator as a hyper-parameter of the posterior distribution of the generator. Specifically, we simulate generators from its posterior distribution conditioned on the discriminator using a stochastic gradient Markov chain Monte Carlo (MCMC) algorithm, and update the discriminator using stochastic gradient descent along with simulations of the generators. We establish convergence of the proposed method to the Nash equilibrium. Apart from image generation, we apply the proposed method to nonparametric clustering and nonparametric conditional independence tests. A portion of the numerical results is presented in the supplementary material.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2306.13641
- https://arxiv.org/pdf/2306.13641
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4382173626
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4382173626Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2306.13641Digital Object Identifier
- Title
-
A New Paradigm for Generative Adversarial Networks based on Randomized Decision RulesWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-06-23Full publication date if available
- Authors
-
Sehwan Kim, Qifan Song, Faming LiangList of authors in order
- Landing page
-
https://arxiv.org/abs/2306.13641Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2306.13641Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2306.13641Direct OA link when available
- Concepts
-
Discriminator, Nonparametric statistics, Computer science, Markov chain Monte Carlo, Posterior probability, Independence (probability theory), Cluster analysis, Bayes' theorem, Mathematical optimization, Artificial intelligence, Machine learning, Algorithm, Mathematics, Bayesian probability, Econometrics, Statistics, Detector, TelecommunicationsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4382173626 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2306.13641 |
| ids.doi | https://doi.org/10.48550/arxiv.2306.13641 |
| ids.openalex | https://openalex.org/W4382173626 |
| fwci | |
| type | preprint |
| title | A New Paradigm for Generative Adversarial Networks based on Randomized Decision Rules |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10775 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.998199999332428 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Generative Adversarial Networks and Image Synthesis |
| topics[1].id | https://openalex.org/T12814 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9857000112533569 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Gaussian Processes and Bayesian Inference |
| topics[2].id | https://openalex.org/T11206 |
| topics[2].field.id | https://openalex.org/fields/31 |
| topics[2].field.display_name | Physics and Astronomy |
| topics[2].score | 0.983299970626831 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3109 |
| topics[2].subfield.display_name | Statistical and Nonlinear Physics |
| topics[2].display_name | Model Reduction and Neural Networks |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2779803651 |
| concepts[0].level | 3 |
| concepts[0].score | 0.6752896308898926 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5282088 |
| concepts[0].display_name | Discriminator |
| concepts[1].id | https://openalex.org/C102366305 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5865064263343811 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1097688 |
| concepts[1].display_name | Nonparametric statistics |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5846665501594543 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C111350023 |
| concepts[3].level | 3 |
| concepts[3].score | 0.473745197057724 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1191869 |
| concepts[3].display_name | Markov chain Monte Carlo |
| concepts[4].id | https://openalex.org/C57830394 |
| concepts[4].level | 3 |
| concepts[4].score | 0.4613490402698517 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q278079 |
| concepts[4].display_name | Posterior probability |
| concepts[5].id | https://openalex.org/C35651441 |
| concepts[5].level | 2 |
| concepts[5].score | 0.45616915822029114 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q625303 |
| concepts[5].display_name | Independence (probability theory) |
| concepts[6].id | https://openalex.org/C73555534 |
| concepts[6].level | 2 |
| concepts[6].score | 0.44628968834877014 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q622825 |
| concepts[6].display_name | Cluster analysis |
| concepts[7].id | https://openalex.org/C207201462 |
| concepts[7].level | 3 |
| concepts[7].score | 0.44053295254707336 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q182505 |
| concepts[7].display_name | Bayes' theorem |
| concepts[8].id | https://openalex.org/C126255220 |
| concepts[8].level | 1 |
| concepts[8].score | 0.41441184282302856 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[8].display_name | Mathematical optimization |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3877258896827698 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C119857082 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3737541735172272 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[10].display_name | Machine learning |
| concepts[11].id | https://openalex.org/C11413529 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3700324296951294 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[11].display_name | Algorithm |
| concepts[12].id | https://openalex.org/C33923547 |
| concepts[12].level | 0 |
| concepts[12].score | 0.30615073442459106 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[12].display_name | Mathematics |
| concepts[13].id | https://openalex.org/C107673813 |
| concepts[13].level | 2 |
| concepts[13].score | 0.26288026571273804 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[13].display_name | Bayesian probability |
| concepts[14].id | https://openalex.org/C149782125 |
| concepts[14].level | 1 |
| concepts[14].score | 0.18131884932518005 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[14].display_name | Econometrics |
| concepts[15].id | https://openalex.org/C105795698 |
| concepts[15].level | 1 |
| concepts[15].score | 0.12745875120162964 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[15].display_name | Statistics |
| concepts[16].id | https://openalex.org/C94915269 |
| concepts[16].level | 2 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q1834857 |
| concepts[16].display_name | Detector |
| concepts[17].id | https://openalex.org/C76155785 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[17].display_name | Telecommunications |
| keywords[0].id | https://openalex.org/keywords/discriminator |
| keywords[0].score | 0.6752896308898926 |
| keywords[0].display_name | Discriminator |
| keywords[1].id | https://openalex.org/keywords/nonparametric-statistics |
| keywords[1].score | 0.5865064263343811 |
| keywords[1].display_name | Nonparametric statistics |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5846665501594543 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/markov-chain-monte-carlo |
| keywords[3].score | 0.473745197057724 |
| keywords[3].display_name | Markov chain Monte Carlo |
| keywords[4].id | https://openalex.org/keywords/posterior-probability |
| keywords[4].score | 0.4613490402698517 |
| keywords[4].display_name | Posterior probability |
| keywords[5].id | https://openalex.org/keywords/independence |
| keywords[5].score | 0.45616915822029114 |
| keywords[5].display_name | Independence (probability theory) |
| keywords[6].id | https://openalex.org/keywords/cluster-analysis |
| keywords[6].score | 0.44628968834877014 |
| keywords[6].display_name | Cluster analysis |
| keywords[7].id | https://openalex.org/keywords/bayes-theorem |
| keywords[7].score | 0.44053295254707336 |
| keywords[7].display_name | Bayes' theorem |
| keywords[8].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[8].score | 0.41441184282302856 |
| keywords[8].display_name | Mathematical optimization |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.3877258896827698 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/machine-learning |
| keywords[10].score | 0.3737541735172272 |
| keywords[10].display_name | Machine learning |
| keywords[11].id | https://openalex.org/keywords/algorithm |
| keywords[11].score | 0.3700324296951294 |
| keywords[11].display_name | Algorithm |
| keywords[12].id | https://openalex.org/keywords/mathematics |
| keywords[12].score | 0.30615073442459106 |
| keywords[12].display_name | Mathematics |
| keywords[13].id | https://openalex.org/keywords/bayesian-probability |
| keywords[13].score | 0.26288026571273804 |
| keywords[13].display_name | Bayesian probability |
| keywords[14].id | https://openalex.org/keywords/econometrics |
| keywords[14].score | 0.18131884932518005 |
| keywords[14].display_name | Econometrics |
| keywords[15].id | https://openalex.org/keywords/statistics |
| keywords[15].score | 0.12745875120162964 |
| keywords[15].display_name | Statistics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2306.13641 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2306.13641 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2306.13641 |
| locations[1].id | doi:10.48550/arxiv.2306.13641 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2306.13641 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5101957469 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9219-1056 |
| authorships[0].author.display_name | Sehwan Kim |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Kim, Sehwan |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5110373518 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Qifan Song |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Song, Qifan |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5085287370 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1177-5501 |
| authorships[2].author.display_name | Faming Liang |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Liang, Faming |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2306.13641 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-06-27T00:00:00 |
| display_name | A New Paradigm for Generative Adversarial Networks based on Randomized Decision Rules |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10775 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.998199999332428 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Generative Adversarial Networks and Image Synthesis |
| related_works | https://openalex.org/W71678127, https://openalex.org/W2157655363, https://openalex.org/W4205763938, https://openalex.org/W2292189132, https://openalex.org/W4288092343, https://openalex.org/W4386114318, https://openalex.org/W2134332527, https://openalex.org/W2962676138, https://openalex.org/W2888496681, https://openalex.org/W2790979771 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2306.13641 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2306.13641 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2306.13641 |
| primary_location.id | pmh:oai:arXiv.org:2306.13641 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2306.13641 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2306.13641 |
| publication_date | 2023-06-23 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 202 |
| abstract_inverted_index.a | 12, 80, 99, 107, 129, 151 |
| abstract_inverted_index.In | 60, 91 |
| abstract_inverted_index.It | 21 |
| abstract_inverted_index.We | 113, 174 |
| abstract_inverted_index.an | 120 |
| abstract_inverted_index.as | 11, 28, 128 |
| abstract_inverted_index.at | 109 |
| abstract_inverted_index.by | 119, 124 |
| abstract_inverted_index.in | 8, 25, 210 |
| abstract_inverted_index.is | 40, 208 |
| abstract_inverted_index.of | 47, 55, 131, 135, 171, 177, 204 |
| abstract_inverted_index.on | 87, 147 |
| abstract_inverted_index.to | 44, 52, 75, 98, 106, 115, 181, 194 |
| abstract_inverted_index.we | 63, 78, 139, 189 |
| abstract_inverted_index.GAN | 39, 69, 85, 118 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.and | 31, 74, 160, 197 |
| abstract_inverted_index.due | 43 |
| abstract_inverted_index.for | 17, 83 |
| abstract_inverted_index.has | 22 |
| abstract_inverted_index.it, | 77 |
| abstract_inverted_index.its | 143 |
| abstract_inverted_index.new | 81, 93 |
| abstract_inverted_index.the | 9, 38, 45, 53, 65, 68, 84, 92, 95, 103, 110, 117, 126, 132, 136, 148, 162, 172, 178, 182, 191, 205, 211 |
| abstract_inverted_index.was | 5 |
| abstract_inverted_index.why | 67 |
| abstract_inverted_index.Nash | 111, 183 |
| abstract_inverted_index.from | 71, 142, 186 |
| abstract_inverted_index.lack | 54 |
| abstract_inverted_index.many | 23 |
| abstract_inverted_index.mode | 48 |
| abstract_inverted_index.such | 27 |
| abstract_inverted_index.this | 61, 72 |
| abstract_inverted_index.with | 169 |
| abstract_inverted_index.(GAN) | 4 |
| abstract_inverted_index.Apart | 185 |
| abstract_inverted_index.Carlo | 157 |
| abstract_inverted_index.Monte | 156 |
| abstract_inverted_index.along | 168 |
| abstract_inverted_index.among | 57 |
| abstract_inverted_index.apply | 190 |
| abstract_inverted_index.based | 86 |
| abstract_inverted_index.chain | 155 |
| abstract_inverted_index.data. | 59 |
| abstract_inverted_index.fixed | 100 |
| abstract_inverted_index.image | 187 |
| abstract_inverted_index.issue | 46 |
| abstract_inverted_index.novel | 13 |
| abstract_inverted_index.point | 101 |
| abstract_inverted_index.train | 116 |
| abstract_inverted_index.using | 150, 164 |
| abstract_inverted_index.which | 50 |
| abstract_inverted_index.while | 102 |
| abstract_inverted_index.(MCMC) | 158 |
| abstract_inverted_index.Markov | 154 |
| abstract_inverted_index.issue, | 73 |
| abstract_inverted_index.method | 16, 123, 180, 193 |
| abstract_inverted_index.paper, | 62 |
| abstract_inverted_index.refers | 51 |
| abstract_inverted_index.rules. | 90 |
| abstract_inverted_index.tests. | 35, 201 |
| abstract_inverted_index.update | 161 |
| abstract_inverted_index.Network | 3 |
| abstract_inverted_index.address | 76 |
| abstract_inverted_index.descent | 167 |
| abstract_inverted_index.machine | 14 |
| abstract_inverted_index.models. | 20 |
| abstract_inverted_index.portion | 203 |
| abstract_inverted_index.propose | 79, 114 |
| abstract_inverted_index.reasons | 66 |
| abstract_inverted_index.results | 207 |
| abstract_inverted_index.suffers | 70 |
| abstract_inverted_index.However, | 36 |
| abstract_inverted_index.decision | 89 |
| abstract_inverted_index.gradient | 153, 166 |
| abstract_inverted_index.identify | 64 |
| abstract_inverted_index.learning | 15 |
| abstract_inverted_index.proposed | 179, 192 |
| abstract_inverted_index.recently | 6 |
| abstract_inverted_index.simulate | 140 |
| abstract_inverted_index.training | 18, 37 |
| abstract_inverted_index.treating | 125 |
| abstract_inverted_index.collapse, | 49 |
| abstract_inverted_index.converges | 97, 105 |
| abstract_inverted_index.difficult | 42 |
| abstract_inverted_index.diversity | 56 |
| abstract_inverted_index.empirical | 121 |
| abstract_inverted_index.establish | 175 |
| abstract_inverted_index.generated | 58 |
| abstract_inverted_index.generator | 104 |
| abstract_inverted_index.material. | 213 |
| abstract_inverted_index.numerical | 206 |
| abstract_inverted_index.posterior | 133, 144 |
| abstract_inverted_index.presented | 209 |
| abstract_inverted_index.Bayes-like | 122 |
| abstract_inverted_index.Generative | 1 |
| abstract_inverted_index.algorithm, | 159 |
| abstract_inverted_index.clustering | 30, 196 |
| abstract_inverted_index.generative | 19 |
| abstract_inverted_index.generator. | 137 |
| abstract_inverted_index.generators | 141 |
| abstract_inverted_index.introduced | 7 |
| abstract_inverted_index.literature | 10 |
| abstract_inverted_index.randomized | 88 |
| abstract_inverted_index.statistics | 26 |
| abstract_inverted_index.stochastic | 152, 165 |
| abstract_inverted_index.Adversarial | 2 |
| abstract_inverted_index.conditional | 33, 199 |
| abstract_inverted_index.conditioned | 146 |
| abstract_inverted_index.convergence | 176 |
| abstract_inverted_index.formulation | 82 |
| abstract_inverted_index.generation, | 188 |
| abstract_inverted_index.generators. | 173 |
| abstract_inverted_index.notoriously | 41 |
| abstract_inverted_index.simulations | 170 |
| abstract_inverted_index.applications | 24 |
| abstract_inverted_index.distribution | 108, 134, 145 |
| abstract_inverted_index.equilibrium. | 112, 184 |
| abstract_inverted_index.formulation, | 94 |
| abstract_inverted_index.independence | 34, 200 |
| abstract_inverted_index.Specifically, | 138 |
| abstract_inverted_index.discriminator | 96, 127, 149, 163 |
| abstract_inverted_index.nonparametric | 29, 32, 195, 198 |
| abstract_inverted_index.supplementary | 212 |
| abstract_inverted_index.hyper-parameter | 130 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.7099999785423279 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile |