A New Prediction Model of Cutterhead Torque in Soil Strata Based on Ultra-Large Section EPB Pipe Jacking Machine Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.3390/infrastructures9120212
Cutterhead torque is a key operational parameter for earth pressure balance (EPB) TBM tunneling in soil strata. The effective management of cutterhead torque can significantly maintain face stability and ensure the tunneling machine operates steadily. The Shenzhen Metro Line 12 project at Shasan Station utilized the world’s largest rectangular pipe jacking machine for constructing the subway station. This project has enabled the collection of relevant data to analyze the factors influencing cutterhead torque and to establish a predictive model. The data encompass an abundant array of cutterhead design parameters, operational parameters, properties of the excavated soil, and environmental factors, revealing the distribution characteristics of cutterhead torque during tunneling. The correlation between various factors and cutterhead torque has been examined. By employing multiple regression analysis and a Levenberg–Marquardt (L-M) algorithm-based neural network, an optimal prediction model for EPB cutterhead torque has been developed. This prediction model incorporates various factors, including cutterhead diameter, RPM, soil chamber pressure, soil shear strength, and the soil consistency index. And the degree of influence of each factor on the cutter torque was also revealed. The prediction results demonstrated good accuracy compared to previous models, providing valuable insights and guidance for EPB TBMs or pipe jacking machines operating in soil strata. The current limitations of this model and suggestions for future work have also been addressed.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/infrastructures9120212
- OA Status
- gold
- References
- 26
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4404594874
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4404594874Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/infrastructures9120212Digital Object Identifier
- Title
-
A New Prediction Model of Cutterhead Torque in Soil Strata Based on Ultra-Large Section EPB Pipe Jacking MachineWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-11-21Full publication date if available
- Authors
-
Jianwei Lu, Bo Sun, Qiuming Gong, Tiantian Song, Wei Li, Wenpeng Zhou, Yang LiList of authors in order
- Landing page
-
https://doi.org/10.3390/infrastructures9120212Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.3390/infrastructures9120212Direct OA link when available
- Concepts
-
Jacking, Torque, Engineering, Geotechnical engineering, Consistency (knowledge bases), Current (fluid), Structural engineering, Computer science, Artificial intelligence, Art, Art history, Thermodynamics, Physics, Electrical engineering, Performance artTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
26Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4404594874 |
|---|---|
| doi | https://doi.org/10.3390/infrastructures9120212 |
| ids.doi | https://doi.org/10.3390/infrastructures9120212 |
| ids.openalex | https://openalex.org/W4404594874 |
| fwci | 0.0 |
| type | article |
| title | A New Prediction Model of Cutterhead Torque in Soil Strata Based on Ultra-Large Section EPB Pipe Jacking Machine |
| biblio.issue | 12 |
| biblio.volume | 9 |
| biblio.last_page | 212 |
| biblio.first_page | 212 |
| topics[0].id | https://openalex.org/T12482 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2205 |
| topics[0].subfield.display_name | Civil and Structural Engineering |
| topics[0].display_name | Tunneling and Rock Mechanics |
| topics[1].id | https://openalex.org/T11046 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9757999777793884 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2213 |
| topics[1].subfield.display_name | Safety, Risk, Reliability and Quality |
| topics[1].display_name | Geotechnical Engineering and Analysis |
| topics[2].id | https://openalex.org/T10892 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9732999801635742 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2212 |
| topics[2].subfield.display_name | Ocean Engineering |
| topics[2].display_name | Drilling and Well Engineering |
| is_xpac | False |
| apc_list.value | 1600 |
| apc_list.currency | CHF |
| apc_list.value_usd | 1732 |
| apc_paid.value | 1600 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 1732 |
| concepts[0].id | https://openalex.org/C2780673593 |
| concepts[0].level | 3 |
| concepts[0].score | 0.9212082624435425 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q6116746 |
| concepts[0].display_name | Jacking |
| concepts[1].id | https://openalex.org/C144171764 |
| concepts[1].level | 2 |
| concepts[1].score | 0.779393196105957 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q48103 |
| concepts[1].display_name | Torque |
| concepts[2].id | https://openalex.org/C127413603 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5238680243492126 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[2].display_name | Engineering |
| concepts[3].id | https://openalex.org/C187320778 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4679880142211914 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1349130 |
| concepts[3].display_name | Geotechnical engineering |
| concepts[4].id | https://openalex.org/C2776436953 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4408058822154999 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q5163215 |
| concepts[4].display_name | Consistency (knowledge bases) |
| concepts[5].id | https://openalex.org/C148043351 |
| concepts[5].level | 2 |
| concepts[5].score | 0.43198198080062866 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q4456944 |
| concepts[5].display_name | Current (fluid) |
| concepts[6].id | https://openalex.org/C66938386 |
| concepts[6].level | 1 |
| concepts[6].score | 0.40530163049697876 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q633538 |
| concepts[6].display_name | Structural engineering |
| concepts[7].id | https://openalex.org/C41008148 |
| concepts[7].level | 0 |
| concepts[7].score | 0.2391851246356964 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[7].display_name | Computer science |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.08779513835906982 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| concepts[9].id | https://openalex.org/C142362112 |
| concepts[9].level | 0 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q735 |
| concepts[9].display_name | Art |
| concepts[10].id | https://openalex.org/C52119013 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q50637 |
| concepts[10].display_name | Art history |
| concepts[11].id | https://openalex.org/C97355855 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11473 |
| concepts[11].display_name | Thermodynamics |
| concepts[12].id | https://openalex.org/C121332964 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[12].display_name | Physics |
| concepts[13].id | https://openalex.org/C119599485 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[13].display_name | Electrical engineering |
| concepts[14].id | https://openalex.org/C554144382 |
| concepts[14].level | 2 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q213156 |
| concepts[14].display_name | Performance art |
| keywords[0].id | https://openalex.org/keywords/jacking |
| keywords[0].score | 0.9212082624435425 |
| keywords[0].display_name | Jacking |
| keywords[1].id | https://openalex.org/keywords/torque |
| keywords[1].score | 0.779393196105957 |
| keywords[1].display_name | Torque |
| keywords[2].id | https://openalex.org/keywords/engineering |
| keywords[2].score | 0.5238680243492126 |
| keywords[2].display_name | Engineering |
| keywords[3].id | https://openalex.org/keywords/geotechnical-engineering |
| keywords[3].score | 0.4679880142211914 |
| keywords[3].display_name | Geotechnical engineering |
| keywords[4].id | https://openalex.org/keywords/consistency |
| keywords[4].score | 0.4408058822154999 |
| keywords[4].display_name | Consistency (knowledge bases) |
| keywords[5].id | https://openalex.org/keywords/current |
| keywords[5].score | 0.43198198080062866 |
| keywords[5].display_name | Current (fluid) |
| keywords[6].id | https://openalex.org/keywords/structural-engineering |
| keywords[6].score | 0.40530163049697876 |
| keywords[6].display_name | Structural engineering |
| keywords[7].id | https://openalex.org/keywords/computer-science |
| keywords[7].score | 0.2391851246356964 |
| keywords[7].display_name | Computer science |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.08779513835906982 |
| keywords[8].display_name | Artificial intelligence |
| language | en |
| locations[0].id | doi:10.3390/infrastructures9120212 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210217608 |
| locations[0].source.issn | 2412-3811 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2412-3811 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Infrastructures |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Infrastructures |
| locations[0].landing_page_url | https://doi.org/10.3390/infrastructures9120212 |
| locations[1].id | pmh:oai:doaj.org/article:03c4d6f2b809430ca3cc890cf973f8c9 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].source.host_organization_lineage | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Infrastructures, Vol 9, Iss 12, p 212 (2024) |
| locations[1].landing_page_url | https://doaj.org/article/03c4d6f2b809430ca3cc890cf973f8c9 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5100948362 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7845-0472 |
| authorships[0].author.display_name | Jianwei Lu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I37796252 |
| authorships[0].affiliations[0].raw_affiliation_string | Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I4210089559 |
| authorships[0].affiliations[1].raw_affiliation_string | Shenzhen Metro Group Co., Ltd., Shenzhen 518038, China |
| authorships[0].institutions[0].id | https://openalex.org/I37796252 |
| authorships[0].institutions[0].ror | https://ror.org/037b1pp87 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I37796252 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Beijing University of Technology |
| authorships[0].institutions[1].id | https://openalex.org/I4210089559 |
| authorships[0].institutions[1].ror | https://ror.org/008hpge95 |
| authorships[0].institutions[1].type | company |
| authorships[0].institutions[1].lineage | https://openalex.org/I4210089559 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Shenzhen Metro (China) |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jianwei Lu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China, Shenzhen Metro Group Co., Ltd., Shenzhen 518038, China |
| authorships[1].author.id | https://openalex.org/A5100374253 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7001-8781 |
| authorships[1].author.display_name | Bo Sun |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210089559 |
| authorships[1].affiliations[0].raw_affiliation_string | Shenzhen Metro Group Co., Ltd., Shenzhen 518038, China |
| authorships[1].institutions[0].id | https://openalex.org/I4210089559 |
| authorships[1].institutions[0].ror | https://ror.org/008hpge95 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210089559 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Shenzhen Metro (China) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Bo Sun |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Shenzhen Metro Group Co., Ltd., Shenzhen 518038, China |
| authorships[2].author.id | https://openalex.org/A5005909432 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2270-3044 |
| authorships[2].author.display_name | Qiuming Gong |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I37796252 |
| authorships[2].affiliations[0].raw_affiliation_string | Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China |
| authorships[2].institutions[0].id | https://openalex.org/I37796252 |
| authorships[2].institutions[0].ror | https://ror.org/037b1pp87 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I37796252 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Beijing University of Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Qiuming Gong |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China |
| authorships[3].author.id | https://openalex.org/A5100567186 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Tiantian Song |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210089559 |
| authorships[3].affiliations[0].raw_affiliation_string | Shenzhen Metro Group Co., Ltd., Shenzhen 518038, China |
| authorships[3].institutions[0].id | https://openalex.org/I4210089559 |
| authorships[3].institutions[0].ror | https://ror.org/008hpge95 |
| authorships[3].institutions[0].type | company |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210089559 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Shenzhen Metro (China) |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Tiantian Song |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Shenzhen Metro Group Co., Ltd., Shenzhen 518038, China |
| authorships[4].author.id | https://openalex.org/A5100318031 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-8123-7795 |
| authorships[4].author.display_name | Wei Li |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210089559 |
| authorships[4].affiliations[0].raw_affiliation_string | Shenzhen Metro Group Co., Ltd., Shenzhen 518038, China |
| authorships[4].institutions[0].id | https://openalex.org/I4210089559 |
| authorships[4].institutions[0].ror | https://ror.org/008hpge95 |
| authorships[4].institutions[0].type | company |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210089559 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Shenzhen Metro (China) |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Wei Li |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | Shenzhen Metro Group Co., Ltd., Shenzhen 518038, China |
| authorships[5].author.id | https://openalex.org/A5101384593 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Wenpeng Zhou |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210092032 |
| authorships[5].affiliations[0].raw_affiliation_string | China Water Resources and Hydropower Eleventh Engineering Bureau Co., Ltd., Zhenzhou 450001, China |
| authorships[5].institutions[0].id | https://openalex.org/I4210092032 |
| authorships[5].institutions[0].ror | https://ror.org/00m4czf33 |
| authorships[5].institutions[0].type | facility |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210092032 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | China Institute of Water Resources and Hydropower Research |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Wenpeng Zhou |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | China Water Resources and Hydropower Eleventh Engineering Bureau Co., Ltd., Zhenzhou 450001, China |
| authorships[6].author.id | https://openalex.org/A5100421788 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-3432-9878 |
| authorships[6].author.display_name | Yang Li |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I4210135994 |
| authorships[6].affiliations[0].raw_affiliation_string | China Railway Engineering Equipment Group Co., Ltd., Zhenzhou 450047, China |
| authorships[6].institutions[0].id | https://openalex.org/I4210135994 |
| authorships[6].institutions[0].ror | https://ror.org/03za3eq42 |
| authorships[6].institutions[0].type | company |
| authorships[6].institutions[0].lineage | https://openalex.org/I4210135994 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | China Railway Group (China) |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Yang Li |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | China Railway Engineering Equipment Group Co., Ltd., Zhenzhou 450047, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.3390/infrastructures9120212 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A New Prediction Model of Cutterhead Torque in Soil Strata Based on Ultra-Large Section EPB Pipe Jacking Machine |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12482 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2205 |
| primary_topic.subfield.display_name | Civil and Structural Engineering |
| primary_topic.display_name | Tunneling and Rock Mechanics |
| related_works | https://openalex.org/W2383670299, https://openalex.org/W3214074821, https://openalex.org/W2373364333, https://openalex.org/W2393857138, https://openalex.org/W2391788811, https://openalex.org/W2390280542, https://openalex.org/W4378085316, https://openalex.org/W2371494122, https://openalex.org/W2014453358, https://openalex.org/W2360538856 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/infrastructures9120212 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210217608 |
| best_oa_location.source.issn | 2412-3811 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2412-3811 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Infrastructures |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Infrastructures |
| best_oa_location.landing_page_url | https://doi.org/10.3390/infrastructures9120212 |
| primary_location.id | doi:10.3390/infrastructures9120212 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210217608 |
| primary_location.source.issn | 2412-3811 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2412-3811 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Infrastructures |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Infrastructures |
| primary_location.landing_page_url | https://doi.org/10.3390/infrastructures9120212 |
| publication_date | 2024-11-21 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2269209149, https://openalex.org/W4382242694, https://openalex.org/W609302337, https://openalex.org/W2029926752, https://openalex.org/W6684633318, https://openalex.org/W2972082603, https://openalex.org/W2803417426, https://openalex.org/W2242381512, https://openalex.org/W2793047315, https://openalex.org/W2951341079, https://openalex.org/W2081364143, https://openalex.org/W2015916019, https://openalex.org/W4388209612, https://openalex.org/W2375206696, https://openalex.org/W2095124269, https://openalex.org/W2755549691, https://openalex.org/W2013625210, https://openalex.org/W2066929260, https://openalex.org/W1980447751, https://openalex.org/W2893966843, https://openalex.org/W3177162782, https://openalex.org/W4212966607, https://openalex.org/W6753888401, https://openalex.org/W2471692061, https://openalex.org/W2020936277, https://openalex.org/W2884877862 |
| referenced_works_count | 26 |
| abstract_inverted_index.a | 3, 76, 125 |
| abstract_inverted_index.12 | 39 |
| abstract_inverted_index.By | 119 |
| abstract_inverted_index.an | 82, 131 |
| abstract_inverted_index.at | 41 |
| abstract_inverted_index.in | 14, 201 |
| abstract_inverted_index.is | 2 |
| abstract_inverted_index.of | 20, 63, 85, 92, 103, 166, 168, 207 |
| abstract_inverted_index.on | 171 |
| abstract_inverted_index.or | 196 |
| abstract_inverted_index.to | 66, 74, 185 |
| abstract_inverted_index.And | 163 |
| abstract_inverted_index.EPB | 136, 194 |
| abstract_inverted_index.TBM | 12 |
| abstract_inverted_index.The | 17, 35, 79, 108, 178, 204 |
| abstract_inverted_index.and | 28, 73, 96, 113, 124, 158, 191, 210 |
| abstract_inverted_index.can | 23 |
| abstract_inverted_index.for | 7, 52, 135, 193, 212 |
| abstract_inverted_index.has | 59, 116, 139 |
| abstract_inverted_index.key | 4 |
| abstract_inverted_index.the | 30, 45, 54, 61, 68, 93, 100, 159, 164, 172 |
| abstract_inverted_index.was | 175 |
| abstract_inverted_index.Line | 38 |
| abstract_inverted_index.RPM, | 151 |
| abstract_inverted_index.TBMs | 195 |
| abstract_inverted_index.This | 57, 142 |
| abstract_inverted_index.also | 176, 216 |
| abstract_inverted_index.been | 117, 140, 217 |
| abstract_inverted_index.data | 65, 80 |
| abstract_inverted_index.each | 169 |
| abstract_inverted_index.face | 26 |
| abstract_inverted_index.good | 182 |
| abstract_inverted_index.have | 215 |
| abstract_inverted_index.pipe | 49, 197 |
| abstract_inverted_index.soil | 15, 152, 155, 160, 202 |
| abstract_inverted_index.this | 208 |
| abstract_inverted_index.work | 214 |
| abstract_inverted_index.(EPB) | 11 |
| abstract_inverted_index.(L-M) | 127 |
| abstract_inverted_index.Metro | 37 |
| abstract_inverted_index.array | 84 |
| abstract_inverted_index.earth | 8 |
| abstract_inverted_index.model | 134, 144, 209 |
| abstract_inverted_index.shear | 156 |
| abstract_inverted_index.soil, | 95 |
| abstract_inverted_index.Shasan | 42 |
| abstract_inverted_index.cutter | 173 |
| abstract_inverted_index.degree | 165 |
| abstract_inverted_index.design | 87 |
| abstract_inverted_index.during | 106 |
| abstract_inverted_index.ensure | 29 |
| abstract_inverted_index.factor | 170 |
| abstract_inverted_index.future | 213 |
| abstract_inverted_index.index. | 162 |
| abstract_inverted_index.model. | 78 |
| abstract_inverted_index.neural | 129 |
| abstract_inverted_index.subway | 55 |
| abstract_inverted_index.torque | 1, 22, 72, 105, 115, 138, 174 |
| abstract_inverted_index.Station | 43 |
| abstract_inverted_index.analyze | 67 |
| abstract_inverted_index.balance | 10 |
| abstract_inverted_index.between | 110 |
| abstract_inverted_index.chamber | 153 |
| abstract_inverted_index.current | 205 |
| abstract_inverted_index.enabled | 60 |
| abstract_inverted_index.factors | 69, 112 |
| abstract_inverted_index.jacking | 50, 198 |
| abstract_inverted_index.largest | 47 |
| abstract_inverted_index.machine | 32, 51 |
| abstract_inverted_index.models, | 187 |
| abstract_inverted_index.optimal | 132 |
| abstract_inverted_index.project | 40, 58 |
| abstract_inverted_index.results | 180 |
| abstract_inverted_index.strata. | 16, 203 |
| abstract_inverted_index.various | 111, 146 |
| abstract_inverted_index.Shenzhen | 36 |
| abstract_inverted_index.abundant | 83 |
| abstract_inverted_index.accuracy | 183 |
| abstract_inverted_index.analysis | 123 |
| abstract_inverted_index.compared | 184 |
| abstract_inverted_index.factors, | 98, 147 |
| abstract_inverted_index.guidance | 192 |
| abstract_inverted_index.insights | 190 |
| abstract_inverted_index.machines | 199 |
| abstract_inverted_index.maintain | 25 |
| abstract_inverted_index.multiple | 121 |
| abstract_inverted_index.network, | 130 |
| abstract_inverted_index.operates | 33 |
| abstract_inverted_index.pressure | 9 |
| abstract_inverted_index.previous | 186 |
| abstract_inverted_index.relevant | 64 |
| abstract_inverted_index.station. | 56 |
| abstract_inverted_index.utilized | 44 |
| abstract_inverted_index.valuable | 189 |
| abstract_inverted_index.diameter, | 150 |
| abstract_inverted_index.effective | 18 |
| abstract_inverted_index.employing | 120 |
| abstract_inverted_index.encompass | 81 |
| abstract_inverted_index.establish | 75 |
| abstract_inverted_index.examined. | 118 |
| abstract_inverted_index.excavated | 94 |
| abstract_inverted_index.including | 148 |
| abstract_inverted_index.influence | 167 |
| abstract_inverted_index.operating | 200 |
| abstract_inverted_index.parameter | 6 |
| abstract_inverted_index.pressure, | 154 |
| abstract_inverted_index.providing | 188 |
| abstract_inverted_index.revealed. | 177 |
| abstract_inverted_index.revealing | 99 |
| abstract_inverted_index.stability | 27 |
| abstract_inverted_index.steadily. | 34 |
| abstract_inverted_index.strength, | 157 |
| abstract_inverted_index.tunneling | 13, 31 |
| abstract_inverted_index.world’s | 46 |
| abstract_inverted_index.Cutterhead | 0 |
| abstract_inverted_index.addressed. | 218 |
| abstract_inverted_index.collection | 62 |
| abstract_inverted_index.cutterhead | 21, 71, 86, 104, 114, 137, 149 |
| abstract_inverted_index.developed. | 141 |
| abstract_inverted_index.management | 19 |
| abstract_inverted_index.prediction | 133, 143, 179 |
| abstract_inverted_index.predictive | 77 |
| abstract_inverted_index.properties | 91 |
| abstract_inverted_index.regression | 122 |
| abstract_inverted_index.tunneling. | 107 |
| abstract_inverted_index.consistency | 161 |
| abstract_inverted_index.correlation | 109 |
| abstract_inverted_index.influencing | 70 |
| abstract_inverted_index.limitations | 206 |
| abstract_inverted_index.operational | 5, 89 |
| abstract_inverted_index.parameters, | 88, 90 |
| abstract_inverted_index.rectangular | 48 |
| abstract_inverted_index.suggestions | 211 |
| abstract_inverted_index.constructing | 53 |
| abstract_inverted_index.demonstrated | 181 |
| abstract_inverted_index.distribution | 101 |
| abstract_inverted_index.incorporates | 145 |
| abstract_inverted_index.environmental | 97 |
| abstract_inverted_index.significantly | 24 |
| abstract_inverted_index.algorithm-based | 128 |
| abstract_inverted_index.characteristics | 102 |
| abstract_inverted_index.Levenberg–Marquardt | 126 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5005909432, https://openalex.org/A5100318031 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| corresponding_institution_ids | https://openalex.org/I37796252, https://openalex.org/I4210089559 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/15 |
| sustainable_development_goals[0].score | 0.6700000166893005 |
| sustainable_development_goals[0].display_name | Life in Land |
| citation_normalized_percentile.value | 0.29488318 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |