A new robust modified capuchin search algorithm for the optimum amalgamation of DSTATCOM in power distribution networks Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1007/s00521-023-09064-0
Very sensitive loads require the safe operation of electrical distribution networks, including hospitals, nuclear and radiation installations, industries used by divers, etc. To address this issue, the provided paper suggests an innovative method for evaluating the appropriate allocation of Distribution STATic COMpensator (DSTATCOM) to alleviate total power losses, relieve voltage deviation, and lessen capital annual price in power distribution grids (PDGs). An innovative approach, known as the modified capuchin search algorithm (mCapSA), has been introduced for the first time, which is capable of addressing several issues regarding optimal DSTATCOM allocation. Furthermore, the analytic hierarchy process method approach is suggested to generate the most suitable weighting factors for the objective function. In order to verify the feasibility of the proposed mCapSA methodology and the performance of DSTATCOM, it has been tested on two standard buses, the 33-bus PDG and the 118-bus PDG, with a load modeling case study based on real measurements and analysis of the middle Egyptian power distribution grid. The proposed mCapSA technique's accuracy is evaluated by comparing it to other 7 recent optimization algorithms including the original CapSA. Furthermore, the Wilcoxon sign rank test is used to assess the significance of the results. Based on the simulation results, it has been demonstrated that optimal DSTATCOM allocation contributes greatly to the reduction of power loss, augmentation of the voltage profile, and reduction of total annual costs. As a result of optimized DSTATCOM allocation in PDGs, distribution-level uncertainties can also be reduced.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1007/s00521-023-09064-0
- https://link.springer.com/content/pdf/10.1007/s00521-023-09064-0.pdf
- OA Status
- hybrid
- Cited By
- 15
- References
- 59
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4387607698
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4387607698Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1007/s00521-023-09064-0Digital Object Identifier
- Title
-
A new robust modified capuchin search algorithm for the optimum amalgamation of DSTATCOM in power distribution networksWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-10-13Full publication date if available
- Authors
-
Mohamed A. Tolba, Essam H. Houssein, Mohammed Hamouda Ali, Fatma A. HashimList of authors in order
- Landing page
-
https://doi.org/10.1007/s00521-023-09064-0Publisher landing page
- PDF URL
-
https://link.springer.com/content/pdf/10.1007/s00521-023-09064-0.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://link.springer.com/content/pdf/10.1007/s00521-023-09064-0.pdfDirect OA link when available
- Concepts
-
Computer science, Weighting, Reduction (mathematics), Mathematical optimization, Algorithm, Wilcoxon signed-rank test, Power (physics), Voltage, Mathematics, Statistics, Engineering, Physics, Quantum mechanics, Medicine, Electrical engineering, Geometry, Mann–Whitney U test, RadiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
15Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 7, 2024: 8Per-year citation counts (last 5 years)
- References (count)
-
59Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4387607698 |
|---|---|
| doi | https://doi.org/10.1007/s00521-023-09064-0 |
| ids.doi | https://doi.org/10.1007/s00521-023-09064-0 |
| ids.openalex | https://openalex.org/W4387607698 |
| fwci | 2.48825847 |
| type | article |
| title | A new robust modified capuchin search algorithm for the optimum amalgamation of DSTATCOM in power distribution networks |
| biblio.issue | 2 |
| biblio.volume | 36 |
| biblio.last_page | 881 |
| biblio.first_page | 843 |
| topics[0].id | https://openalex.org/T10603 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9990000128746033 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Smart Grid Energy Management |
| topics[1].id | https://openalex.org/T10454 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.998199999332428 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Optimal Power Flow Distribution |
| topics[2].id | https://openalex.org/T10573 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9980000257492065 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Power Quality and Harmonics |
| is_xpac | False |
| apc_list.value | 2390 |
| apc_list.currency | EUR |
| apc_list.value_usd | 2990 |
| apc_paid.value | 2390 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 2990 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7043803930282593 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C183115368 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5949541926383972 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q856577 |
| concepts[1].display_name | Weighting |
| concepts[2].id | https://openalex.org/C111335779 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5688289403915405 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3454686 |
| concepts[2].display_name | Reduction (mathematics) |
| concepts[3].id | https://openalex.org/C126255220 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5651677250862122 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[3].display_name | Mathematical optimization |
| concepts[4].id | https://openalex.org/C11413529 |
| concepts[4].level | 1 |
| concepts[4].score | 0.46873411536216736 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[4].display_name | Algorithm |
| concepts[5].id | https://openalex.org/C206041023 |
| concepts[5].level | 3 |
| concepts[5].score | 0.4679476320743561 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1751970 |
| concepts[5].display_name | Wilcoxon signed-rank test |
| concepts[6].id | https://openalex.org/C163258240 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4506448209285736 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q25342 |
| concepts[6].display_name | Power (physics) |
| concepts[7].id | https://openalex.org/C165801399 |
| concepts[7].level | 2 |
| concepts[7].score | 0.44352155923843384 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q25428 |
| concepts[7].display_name | Voltage |
| concepts[8].id | https://openalex.org/C33923547 |
| concepts[8].level | 0 |
| concepts[8].score | 0.17333903908729553 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[8].display_name | Mathematics |
| concepts[9].id | https://openalex.org/C105795698 |
| concepts[9].level | 1 |
| concepts[9].score | 0.1168350875377655 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[9].display_name | Statistics |
| concepts[10].id | https://openalex.org/C127413603 |
| concepts[10].level | 0 |
| concepts[10].score | 0.08713865280151367 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[10].display_name | Engineering |
| concepts[11].id | https://openalex.org/C121332964 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[11].display_name | Physics |
| concepts[12].id | https://openalex.org/C62520636 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[12].display_name | Quantum mechanics |
| concepts[13].id | https://openalex.org/C71924100 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[13].display_name | Medicine |
| concepts[14].id | https://openalex.org/C119599485 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[14].display_name | Electrical engineering |
| concepts[15].id | https://openalex.org/C2524010 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[15].display_name | Geometry |
| concepts[16].id | https://openalex.org/C12868164 |
| concepts[16].level | 2 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q1424533 |
| concepts[16].display_name | Mann–Whitney U test |
| concepts[17].id | https://openalex.org/C126838900 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[17].display_name | Radiology |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7043803930282593 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/weighting |
| keywords[1].score | 0.5949541926383972 |
| keywords[1].display_name | Weighting |
| keywords[2].id | https://openalex.org/keywords/reduction |
| keywords[2].score | 0.5688289403915405 |
| keywords[2].display_name | Reduction (mathematics) |
| keywords[3].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[3].score | 0.5651677250862122 |
| keywords[3].display_name | Mathematical optimization |
| keywords[4].id | https://openalex.org/keywords/algorithm |
| keywords[4].score | 0.46873411536216736 |
| keywords[4].display_name | Algorithm |
| keywords[5].id | https://openalex.org/keywords/wilcoxon-signed-rank-test |
| keywords[5].score | 0.4679476320743561 |
| keywords[5].display_name | Wilcoxon signed-rank test |
| keywords[6].id | https://openalex.org/keywords/power |
| keywords[6].score | 0.4506448209285736 |
| keywords[6].display_name | Power (physics) |
| keywords[7].id | https://openalex.org/keywords/voltage |
| keywords[7].score | 0.44352155923843384 |
| keywords[7].display_name | Voltage |
| keywords[8].id | https://openalex.org/keywords/mathematics |
| keywords[8].score | 0.17333903908729553 |
| keywords[8].display_name | Mathematics |
| keywords[9].id | https://openalex.org/keywords/statistics |
| keywords[9].score | 0.1168350875377655 |
| keywords[9].display_name | Statistics |
| keywords[10].id | https://openalex.org/keywords/engineering |
| keywords[10].score | 0.08713865280151367 |
| keywords[10].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.1007/s00521-023-09064-0 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S147897268 |
| locations[0].source.issn | 0941-0643, 1433-3058 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0941-0643 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Neural Computing and Applications |
| locations[0].source.host_organization | https://openalex.org/P4310319900 |
| locations[0].source.host_organization_name | Springer Science+Business Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://link.springer.com/content/pdf/10.1007/s00521-023-09064-0.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Neural Computing and Applications |
| locations[0].landing_page_url | https://doi.org/10.1007/s00521-023-09064-0 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5067717428 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3085-0853 |
| authorships[0].author.display_name | Mohamed A. Tolba |
| authorships[0].countries | EG |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I3089115 |
| authorships[0].affiliations[0].raw_affiliation_string | Reactors Department, Nuclear Research Center, Egyptian Atomic Energy Authority (EAEA), Cairo, 11787, Egypt |
| authorships[0].institutions[0].id | https://openalex.org/I3089115 |
| authorships[0].institutions[0].ror | https://ror.org/04hd0yz67 |
| authorships[0].institutions[0].type | government |
| authorships[0].institutions[0].lineage | https://openalex.org/I3089115 |
| authorships[0].institutions[0].country_code | EG |
| authorships[0].institutions[0].display_name | Egyptian Atomic Energy Authority |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Mohamed A. Tolba |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Reactors Department, Nuclear Research Center, Egyptian Atomic Energy Authority (EAEA), Cairo, 11787, Egypt |
| authorships[1].author.id | https://openalex.org/A5056436780 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8127-7233 |
| authorships[1].author.display_name | Essam H. Houssein |
| authorships[1].countries | EG |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I89466785 |
| authorships[1].affiliations[0].raw_affiliation_string | Faculty of Computers and Information, Minia University, Minia, 61519, Egypt |
| authorships[1].institutions[0].id | https://openalex.org/I89466785 |
| authorships[1].institutions[0].ror | https://ror.org/02hcv4z63 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I89466785 |
| authorships[1].institutions[0].country_code | EG |
| authorships[1].institutions[0].display_name | Minia University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Essam H. Houssein |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Faculty of Computers and Information, Minia University, Minia, 61519, Egypt |
| authorships[2].author.id | https://openalex.org/A5050558963 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0910-9243 |
| authorships[2].author.display_name | Mohammed Hamouda Ali |
| authorships[2].countries | EG |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I184834183 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Electrical Engineering, AL-Azhar University, Cairo, Egypt |
| authorships[2].institutions[0].id | https://openalex.org/I184834183 |
| authorships[2].institutions[0].ror | https://ror.org/05fnp1145 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I184834183 |
| authorships[2].institutions[0].country_code | EG |
| authorships[2].institutions[0].display_name | Al-Azhar University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Mohammed Hamouda Ali |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Electrical Engineering, AL-Azhar University, Cairo, Egypt |
| authorships[3].author.id | https://openalex.org/A5013128456 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-3483-5498 |
| authorships[3].author.display_name | Fatma A. Hashim |
| authorships[3].countries | EG |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I84058292 |
| authorships[3].affiliations[0].raw_affiliation_string | Faculty of Engineering, Helwan University, Cairo, 11795, Egypt |
| authorships[3].institutions[0].id | https://openalex.org/I84058292 |
| authorships[3].institutions[0].ror | https://ror.org/00h55v928 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I84058292 |
| authorships[3].institutions[0].country_code | EG |
| authorships[3].institutions[0].display_name | Helwan University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Fatma A. Hashim |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Faculty of Engineering, Helwan University, Cairo, 11795, Egypt |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://link.springer.com/content/pdf/10.1007/s00521-023-09064-0.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A new robust modified capuchin search algorithm for the optimum amalgamation of DSTATCOM in power distribution networks |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10603 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9990000128746033 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Smart Grid Energy Management |
| related_works | https://openalex.org/W2180954594, https://openalex.org/W2052835778, https://openalex.org/W2049003611, https://openalex.org/W2127804977, https://openalex.org/W2108418243, https://openalex.org/W164103134, https://openalex.org/W2787352659, https://openalex.org/W1970611213, https://openalex.org/W1707372784, https://openalex.org/W2096006843 |
| cited_by_count | 15 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 7 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 8 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1007/s00521-023-09064-0 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S147897268 |
| best_oa_location.source.issn | 0941-0643, 1433-3058 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0941-0643 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Neural Computing and Applications |
| best_oa_location.source.host_organization | https://openalex.org/P4310319900 |
| best_oa_location.source.host_organization_name | Springer Science+Business Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s00521-023-09064-0.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Neural Computing and Applications |
| best_oa_location.landing_page_url | https://doi.org/10.1007/s00521-023-09064-0 |
| primary_location.id | doi:10.1007/s00521-023-09064-0 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S147897268 |
| primary_location.source.issn | 0941-0643, 1433-3058 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0941-0643 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Neural Computing and Applications |
| primary_location.source.host_organization | https://openalex.org/P4310319900 |
| primary_location.source.host_organization_name | Springer Science+Business Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s00521-023-09064-0.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Neural Computing and Applications |
| primary_location.landing_page_url | https://doi.org/10.1007/s00521-023-09064-0 |
| publication_date | 2023-10-13 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W3033175932, https://openalex.org/W3014845991, https://openalex.org/W2947317389, https://openalex.org/W2782001638, https://openalex.org/W2735008778, https://openalex.org/W2996595443, https://openalex.org/W2614675218, https://openalex.org/W2014752358, https://openalex.org/W2909406399, https://openalex.org/W4200296473, https://openalex.org/W2897905943, https://openalex.org/W3012230867, https://openalex.org/W2031846055, https://openalex.org/W2091341516, https://openalex.org/W2762210062, https://openalex.org/W2142919013, https://openalex.org/W2560052629, https://openalex.org/W2027967474, https://openalex.org/W2429484160, https://openalex.org/W2588181700, https://openalex.org/W1562361546, https://openalex.org/W2175260795, https://openalex.org/W2910057851, https://openalex.org/W2793325539, https://openalex.org/W2774188582, https://openalex.org/W1990983520, https://openalex.org/W1194932874, https://openalex.org/W2084507649, https://openalex.org/W2883452974, https://openalex.org/W2620336023, https://openalex.org/W2807989653, https://openalex.org/W2465675734, https://openalex.org/W2254841289, https://openalex.org/W3005188950, https://openalex.org/W3214649556, https://openalex.org/W3133600562, https://openalex.org/W2890149163, https://openalex.org/W3010341683, https://openalex.org/W2152127383, https://openalex.org/W2027888404, https://openalex.org/W3024295450, https://openalex.org/W2605586202, https://openalex.org/W3135527531, https://openalex.org/W3177440757, https://openalex.org/W2151554678, https://openalex.org/W3039133387, https://openalex.org/W2152195021, https://openalex.org/W2138537392, https://openalex.org/W2072955302, https://openalex.org/W2290883490, https://openalex.org/W2919979744, https://openalex.org/W3090396243, https://openalex.org/W2157256681, https://openalex.org/W2105302512, https://openalex.org/W2024352272, https://openalex.org/W3083172984, https://openalex.org/W1857789879, https://openalex.org/W3104061203, https://openalex.org/W1964488708 |
| referenced_works_count | 59 |
| abstract_inverted_index.7 | 173 |
| abstract_inverted_index.a | 143, 229 |
| abstract_inverted_index.An | 62 |
| abstract_inverted_index.As | 228 |
| abstract_inverted_index.In | 111 |
| abstract_inverted_index.To | 23 |
| abstract_inverted_index.an | 31 |
| abstract_inverted_index.as | 66 |
| abstract_inverted_index.be | 241 |
| abstract_inverted_index.by | 20, 168 |
| abstract_inverted_index.in | 57, 235 |
| abstract_inverted_index.is | 81, 98, 166, 187 |
| abstract_inverted_index.it | 127, 170, 201 |
| abstract_inverted_index.of | 8, 39, 83, 117, 125, 154, 193, 214, 218, 224, 231 |
| abstract_inverted_index.on | 131, 149, 197 |
| abstract_inverted_index.to | 44, 100, 113, 171, 189, 211 |
| abstract_inverted_index.PDG | 137 |
| abstract_inverted_index.The | 161 |
| abstract_inverted_index.and | 15, 52, 122, 138, 152, 222 |
| abstract_inverted_index.can | 239 |
| abstract_inverted_index.for | 34, 76, 107 |
| abstract_inverted_index.has | 73, 128, 202 |
| abstract_inverted_index.the | 5, 27, 36, 67, 77, 92, 102, 108, 115, 118, 123, 135, 139, 155, 178, 182, 191, 194, 198, 212, 219 |
| abstract_inverted_index.two | 132 |
| abstract_inverted_index.PDG, | 141 |
| abstract_inverted_index.Very | 1 |
| abstract_inverted_index.also | 240 |
| abstract_inverted_index.been | 74, 129, 203 |
| abstract_inverted_index.case | 146 |
| abstract_inverted_index.etc. | 22 |
| abstract_inverted_index.load | 144 |
| abstract_inverted_index.most | 103 |
| abstract_inverted_index.rank | 185 |
| abstract_inverted_index.real | 150 |
| abstract_inverted_index.safe | 6 |
| abstract_inverted_index.sign | 184 |
| abstract_inverted_index.test | 186 |
| abstract_inverted_index.that | 205 |
| abstract_inverted_index.this | 25 |
| abstract_inverted_index.used | 19, 188 |
| abstract_inverted_index.with | 142 |
| abstract_inverted_index.Based | 196 |
| abstract_inverted_index.PDGs, | 236 |
| abstract_inverted_index.based | 148 |
| abstract_inverted_index.first | 78 |
| abstract_inverted_index.grid. | 160 |
| abstract_inverted_index.grids | 60 |
| abstract_inverted_index.known | 65 |
| abstract_inverted_index.loads | 3 |
| abstract_inverted_index.loss, | 216 |
| abstract_inverted_index.order | 112 |
| abstract_inverted_index.other | 172 |
| abstract_inverted_index.paper | 29 |
| abstract_inverted_index.power | 47, 58, 158, 215 |
| abstract_inverted_index.price | 56 |
| abstract_inverted_index.study | 147 |
| abstract_inverted_index.time, | 79 |
| abstract_inverted_index.total | 46, 225 |
| abstract_inverted_index.which | 80 |
| abstract_inverted_index.33-bus | 136 |
| abstract_inverted_index.CapSA. | 180 |
| abstract_inverted_index.STATic | 41 |
| abstract_inverted_index.annual | 55, 226 |
| abstract_inverted_index.assess | 190 |
| abstract_inverted_index.buses, | 134 |
| abstract_inverted_index.costs. | 227 |
| abstract_inverted_index.issue, | 26 |
| abstract_inverted_index.issues | 86 |
| abstract_inverted_index.lessen | 53 |
| abstract_inverted_index.mCapSA | 120, 163 |
| abstract_inverted_index.method | 33, 96 |
| abstract_inverted_index.middle | 156 |
| abstract_inverted_index.recent | 174 |
| abstract_inverted_index.result | 230 |
| abstract_inverted_index.search | 70 |
| abstract_inverted_index.tested | 130 |
| abstract_inverted_index.verify | 114 |
| abstract_inverted_index.(PDGs). | 61 |
| abstract_inverted_index.118-bus | 140 |
| abstract_inverted_index.address | 24 |
| abstract_inverted_index.capable | 82 |
| abstract_inverted_index.capital | 54 |
| abstract_inverted_index.divers, | 21 |
| abstract_inverted_index.factors | 106 |
| abstract_inverted_index.greatly | 210 |
| abstract_inverted_index.losses, | 48 |
| abstract_inverted_index.nuclear | 14 |
| abstract_inverted_index.optimal | 88, 206 |
| abstract_inverted_index.process | 95 |
| abstract_inverted_index.relieve | 49 |
| abstract_inverted_index.require | 4 |
| abstract_inverted_index.several | 85 |
| abstract_inverted_index.voltage | 50, 220 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.DSTATCOM | 89, 207, 233 |
| abstract_inverted_index.Egyptian | 157 |
| abstract_inverted_index.Wilcoxon | 183 |
| abstract_inverted_index.accuracy | 165 |
| abstract_inverted_index.analysis | 153 |
| abstract_inverted_index.analytic | 93 |
| abstract_inverted_index.approach | 97 |
| abstract_inverted_index.capuchin | 69 |
| abstract_inverted_index.generate | 101 |
| abstract_inverted_index.modeling | 145 |
| abstract_inverted_index.modified | 68 |
| abstract_inverted_index.original | 179 |
| abstract_inverted_index.profile, | 221 |
| abstract_inverted_index.proposed | 119, 162 |
| abstract_inverted_index.provided | 28 |
| abstract_inverted_index.reduced. | 242 |
| abstract_inverted_index.results, | 200 |
| abstract_inverted_index.results. | 195 |
| abstract_inverted_index.standard | 133 |
| abstract_inverted_index.suggests | 30 |
| abstract_inverted_index.suitable | 104 |
| abstract_inverted_index.(mCapSA), | 72 |
| abstract_inverted_index.DSTATCOM, | 126 |
| abstract_inverted_index.algorithm | 71 |
| abstract_inverted_index.alleviate | 45 |
| abstract_inverted_index.approach, | 64 |
| abstract_inverted_index.comparing | 169 |
| abstract_inverted_index.evaluated | 167 |
| abstract_inverted_index.function. | 110 |
| abstract_inverted_index.hierarchy | 94 |
| abstract_inverted_index.including | 12, 177 |
| abstract_inverted_index.networks, | 11 |
| abstract_inverted_index.objective | 109 |
| abstract_inverted_index.operation | 7 |
| abstract_inverted_index.optimized | 232 |
| abstract_inverted_index.radiation | 16 |
| abstract_inverted_index.reduction | 213, 223 |
| abstract_inverted_index.regarding | 87 |
| abstract_inverted_index.sensitive | 2 |
| abstract_inverted_index.suggested | 99 |
| abstract_inverted_index.weighting | 105 |
| abstract_inverted_index.(DSTATCOM) | 43 |
| abstract_inverted_index.addressing | 84 |
| abstract_inverted_index.algorithms | 176 |
| abstract_inverted_index.allocation | 38, 208, 234 |
| abstract_inverted_index.deviation, | 51 |
| abstract_inverted_index.electrical | 9 |
| abstract_inverted_index.evaluating | 35 |
| abstract_inverted_index.hospitals, | 13 |
| abstract_inverted_index.industries | 18 |
| abstract_inverted_index.innovative | 32, 63 |
| abstract_inverted_index.introduced | 75 |
| abstract_inverted_index.simulation | 199 |
| abstract_inverted_index.COMpensator | 42 |
| abstract_inverted_index.allocation. | 90 |
| abstract_inverted_index.appropriate | 37 |
| abstract_inverted_index.contributes | 209 |
| abstract_inverted_index.feasibility | 116 |
| abstract_inverted_index.methodology | 121 |
| abstract_inverted_index.performance | 124 |
| abstract_inverted_index.technique's | 164 |
| abstract_inverted_index.Distribution | 40 |
| abstract_inverted_index.Furthermore, | 91, 181 |
| abstract_inverted_index.augmentation | 217 |
| abstract_inverted_index.demonstrated | 204 |
| abstract_inverted_index.distribution | 10, 59, 159 |
| abstract_inverted_index.measurements | 151 |
| abstract_inverted_index.optimization | 175 |
| abstract_inverted_index.significance | 192 |
| abstract_inverted_index.uncertainties | 238 |
| abstract_inverted_index.installations, | 17 |
| abstract_inverted_index.distribution-level | 237 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 98 |
| corresponding_author_ids | https://openalex.org/A5067717428 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I3089115 |
| citation_normalized_percentile.value | 0.89054408 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |